

SOUTH BANK QUAY PHASE 1

FULL DESIGN PACKAGE – DRAINAGE SBQ1-DCL-CIV-SBKXX-CA-CE-000006-P02

May 2022

CONSULTING ENGINEERS

- » Civil Engineering
- » Structural Engineering
- » Traffic and Transportation
- » CDM Co-ordination
- » Project Management

Electronic Copy

DORAN CONSULTING

SOUTH BANK QUAY PHASE 1

FULL DESIGN PACKAGE – DRAINAGE

SBQ1-DCL-CIV-SBKXX-CA-CE-000006-P02

May 2022

Job no	Prepared by	Checked by	Approved by	Status	Rev	Issued to	No of copies	Date
SBQ1	PMcM	SJQ	CD	S5	P02	GRAHAM	e*	04/05/22
SBQ1	PMcM	SJQ	CD	S5	P01	GRAHAM	e*	24/03/22

Doran Consulting Limited Registered Office Norwood House 96-102 Great Victoria Street Belfast BT2 7BE

T 028 9033 3443

F 028 9023 5501

E mail@doran.co.uk

W www.doran.co.uk

Contents

1.0	INTRODUCTION	4
1.1	Description of the proposed Works	4
1.2	Acceptance in Principle Document	5
1.3	Objectives	5
1.4	Design Codes, Standards and Reference Documents	5
2.0	DEFINITIONS & ABBREVIATIONS	7
2.1	Acronyms & Abbreviations	7
3.0	FUNCTIONAL LAYOUT	8
4.0	DESIGN PHILOSOPHY AND METHODOLOGY	9
4.1	Design Philosophy	9
4.2	Design Parameters	
4.3	Location of Above Ground Equipment	
4.4	Trenching	
4.5	Materials and Structural Form	13
4.6	Manhole Frames and Covers	14
4.7	Oil Separator	15
4.8	Outfalls	15
4.9	Testing of Gravity Pipeline	15
5.0	ANALYSIS AND DESIGN METHODOLOGY	16
5.1	Surface Water Drainage System	16
5.2	Pavement Level Strategy	16
5.3	Pipe and Manhole Sizing	16
5.4	ACO Slot Drains	16
5.5	Full Retention Interceptor	17
APPE APPE APPE APPE APPE APPE	NDIX A – ACCEPTANCE IN PRINCIPLE DOCUMENT NDIX B – DRAINAGE DRAWINGS NDIX C – MICRODRAINAGE CALCULATIONS NDIX D – ACO SYSTEM CALCULATIONS NDIX E – DESIGNERS RISK ASSESSMENT NDIX F – CAT 2 DESIGN CHECK COMMENTS NDIX G – DESIGN AND CHECK CERTIFICATES NDIX H – DRAINAGE SPECIFICATION	

1.0 INTRODUCTION

1.1 Description of the proposed Works

The purpose of the Works is to create a staging and manufacture hub, for offshore wind developments, on the River Tees. The proposed works (Phase 1) aims to deliver 450m of operational berth suitable for suitable extension to 1,035m of operational berth in future and comprises the following:

- Demolition of the existing wharf, jetties and associated infrastructure
- Construction of 450m of quay plus transition flares at each end. The quay wall will comprise a steel combi-wall connected by tie rods to an anchor wall inland of the quay.
- Capital dredging to create a new berth pocket and deepen the approach channel
- Pavement construction comprising;
 - Reinforced concrete pavement provided over a 50m wide strip parallel with the Phase 1 quay works as follows:
 - A zone 96m long to the NE of the heavy-lift platform.
 - A zone 100m long to the SW of the heavy-lift platform.
 - A zone 20m wide landward of the heavy lift platform.
 - Unbound pavements shall be provided over a 50m wide strip parallel with the Phase 1 quay works as follows:
 - A zone 90m long at the NE transition flare.
 - A zone 90m long at the Phase 1/Phase 2 transition flare.
- Surface water drainage to bound and unbound pavement areas

• Mechanical and Electrical system, including potable and firewater distribution system and spare duct network.

1.2 Acceptance in Principle Document

The design substantiated by the following calculations complies with the Employer's requirements which have been translated into the Acceptance in Principle (AIP) document (SBQ1-DCL-CIV-SBKXX-RP-CE-000006), included in Appendix A.

1.3 Objectives

The objective of this document is to present the design of the following element of the project:

• Surface water drainage system.

1.4 Design Codes, Standards and Reference Documents

The design shall be carried out in accordance with the codes and standards as stated in the Royal Haskoning DHV document titled *"Specification, South Bank Quay Phase 1, Scope Part 2 – Technical".* A non-exhaustive summary of the principal codes, standards and design guidance used are provided in Table 1-1 below.

Standard No.	Title				
Eurocodes					
BS EN 1990	Eurocode 0: Basis of structural design*				
BS EN 1991-1	Eurocode 1: Actions on structures*				
BS EN 1992-1	Eurocode 2: Design of concrete structures*				
BS EN 1993-1	Eurocode 3 Design of steel structures*				
BE EN 1993-5	Eurocode 3: Design of steel structures - Part 5: Piling*				
BS EN 1997-1	997-1 Eurocode 7: Geotechnical design: General rules*				
EN 1993-5 Eurocode 3: Design of steel structures: Piling*					
*And associated UK National Annexes					
British Standards					
BS 6349-1-1 Maritime works, Part 1-1 – General - Code of practice for planning and design for operations					

BS 6349-1-2	Maritime works, Part 1-2 – General - Code of practice for assessment of actions			
BS 6349-1-3	Maritime works, Part 1-3 – General - Code of practice for geotechnical design			
BS 6349-1-4	Maritime works, Part 1-4 – General - Code of practice for materials			
BS 6349-2	Maritime works, Part 2 – Code of practice for design of quay walls, jetties and dolphins			
BS 6349-5	Maritime works, Part 5 – Code of practice for dredging and land reclamation			
Design Guides and A	dditional References – Surface Water Drainage System			
Design and Construction Guidance	Design and Construction Guidance for foul and surface water sewers offered for adoption under the Code for adoption agreements for water and sewerage companies operating wholly or mainly in England ("the Code"), May 2021.			
BS EN 16933-2:2017	Drain and Sewer Systems Outside Buildings - Design - Part 2: Hydraulic Design.			
BS EN 752:2017	Drain and Sewer Systems Outside Buildings – Sewer System Management.			
-	Building Regulations Approved Document H – Drainage and Waste Disposal.			
_	Sewer Sector Guidance Appendix C – Design and Construction Guidance			
BS EN 1295-1: 2019	Structural design of buried pipelines under various conditions of loading			
PIANC WG 165	Design and maintenance of Container Terminal Pavements			
Table 4 4. Desime Ore				

Table 1-1: Design Codes and Standards

2.0 **DEFINITIONS & ABBREVIATIONS**

2.1 Acronyms & Abbreviations

Full Title	Abbreviation
Acceptance in Principle	AIP
Accelerated Low Water Corrosion	ALWC
Chart Datum	CD
Geotechnical Design Report	GDR
Geotechnical Interpretative Report	GIR
Highest Astronomical Tide	НАТ
Lowest Astronomical Tide	LAT
kilo Newton	kN
Mean High Water Springs	MHWS
Mean Low Water Springs	MLWS
Microbiologically Induced Corrosion	MIC
Ordnance Datum	OD
Percentage Impermeable Proportion	PIMP
Serviceability Limit State	SLS
Ultimate Limit State	ULS
Uniformly Distributed Load	UDL

Table 2-1: Acronyms & Abbreviations

3.0 FUNCTIONAL LAYOUT

The drainage area is defined by the capping beam, concrete pavement area on Drainage Drawing SBQ1-DCL-CIV-SBKXX-DR-CE-400001-P05 (450m x 50m) and the unbound pavements at the 2No. transition zones measuring 90m x 50m.

The run-off from areas immediately landward of the 50m transition pavement, and 50m pavement across the 450m berth, is assumed to be incorporated in the Client's (STDC's) site wide drainage strategy and are therefore not incorporated in this FDP.

The paved area comprises;

- Reinforced concrete pavement provided over a 50m wide strip parallel with the Phase 1 quay works as follows:
 - A zone 96m long to the NE of the heavy-lift platform.
 - A zone 100m long to the SW of the heavy-lift platform.
 - A zone 20m wide landward of the heavy lift platform.
- Unbound pavements shall be provided over a 50m wide strip parallel with the Phase 1 quay works as follows:
 - A zone 90m long at the NE transition flare.
 - A zone 90m long at the Phase 1/Phase 2 transition flare.
- Capping beam, varying in width between 2.75m typically to 1.2m at the NE transition flare.

4.0 DESIGN PHILOSOPHY AND METHODOLOGY

4.1 Design Philosophy

The surface water drainage system has been designed in accordance with the Approval In Principle document. The primary function of the storm water drainage system is to collect surface runoff from the quay paving in an efficient manner. The drainage area includes the capping beam, 450m x 50m concrete pavement and 2No. 90m x 50m unbound transition zone (/flare) pavements. An ACO linear drainage system shall collect run-off from the bound concrete pavement. A filter drain with invert level of 1,500mm below the surface of the unbound granular pavement shall collect run-off from the 90m transition zones.

The surface water drainage system will drain surface water from the paved areas under gravity, and discharge to the River Tees via 4no Klargester NSFA225 Class 1 full retention interceptors and outfalls located within the combi-wall. The full retention separators are located upstream of each outfall to capture hydrocarbons. A penstock is provided downstream of each separator to prevent discharge into the River Tees in the event of an emergency/spillage. 600mm diameter tidal flap valves will be installed to the seaward side of each outfall to prevent water from the River Tees entering the drainage system.

The linear drainage system is aligned along the landward edge of the proposed 30m wide heavy lift platform. This is in lieu of the Tender specified centreline of the 50m pavement strip. This change has been made so to reduce the drainage systems encroachment into the heavy lift platform operational area.

It is assumed that the area landward of the 50m pavement is included within the Client's (STDC's) site wide drainage strategy and therefore is not included within this FDP.

The maximum expected settlement expected during the design life of the pavement is approximately 80mm. The pipe gradient between all key elements has been increased to accommodate a potential 80mm settlement. The minimum gradient of pipes following the predicted settlement will be 1/D for gravity pipes, where D is the diameter in mm. Rocker pipes will be installed at all pipe connects to enable rotation of the pipes.

4.2 Design Parameters

The Design Inputs and Parameters for the Surface Water Drainage design are outlined in Table 4-1 below. References to the relevant sections of the AIP document are provided.

	DESIGN PARAMETERS				
Design Life (ref A.I.P 4.2)	<u>Valves, Hydrants and Fittings</u> : 25years (normal and routine maintenance required in accordance with manufacturer's instructions)				
	Surface Water Drainage Pipework: 50 years based on routine maintenance (annual (or as required) inspection for blockages and signs of damage. Removal of blockages, silt and debris is required).				
	Surface Water Drainage Manholes and Gullies: 50 years based on routine maintenance (annual (or as required) inspection for blockages and signs of damage. Removal of blockages, silt and debris is required).				
	<u>Oil Separators:</u> 50 years (normal and routine maintenance required in accordance with manufacturer's instructions)				
C.C. Allowance (ref A.I.P 4.2)	40% to be used in the drainage design (Upper end – 2060 to 2115)				
Rainfall Data	NGR – NZ 53556 22656				
(ref A.I.P 4.2)	Bifhost – 0.712				
	Bfihost19 – 0.744				
	Propwet - 0.32				
	SAAR6190 – 594mm				
	Rainfall data – FEH 2013				
	Obtained using Flood Estimation Handbook (FEH) Web Service				
Time of Entry (ref A.I.P 4.2)	4 minutes				

Volumetric Runoff Coefficient for Summer (ref A.I.P 4.2) Volumetric Runoff	0.75 0.84
Coefficient for Winter (ref A.I.P 4.2)	
Gravity Pipe	Concrete pipes: 0.6
Roughness (k) (mm) (ref A.I.P 4.2)	HDPE and uPVC (smooth internal bore): 0.015
PIMP for all hardstanding areas (ref A.I.P 4.2)	100%
Minimum self- cleansing velocity (m/s) 1.0 (ref A.I.P 4.2)	1.0
Minimum depth of cover to crown (ref A.I.P 4.2)	The minimum cover to pipes shall be; Road / Trafficked Area: 1.2m Where the depth of cover is less than the minimum value, pipes shall be protected by a SHW Class Z concrete surround.
Minimum Hydraulic Performance	 1 in 2 year – no surcharging of the network 1 in 30 year – design not to flood any part of the site
Requirements per Return Period (ref A.I.P 4.2)	1 in 100year + 40% Climate change – flooding to remain on site, buildings to be protected

Differential Settlement	Additional falls shall be provided to ensure that after predicted settlement, the slopes of the pipes will be sufficient for the drainage system to comply with the design criteria.
Minimum Slope	Minimum 1/D for gravity pipes, where D is the diameter in mm.
Catchment Area	Refer to Drawings in Appendix B.

Table 4-1: Design parameters

4.3 Location of Above Ground Equipment

All above ground equipment, such as electrical control cabinets/mini pillars, warning beacons etc) are to be located clear of main trafficked routes and normal plant operating areas. Where they could be vulnerable to accidental impact from vehicles, they will be protected by bollards and vehicle restraint barriers.

An electrical mini pillar is shown on drawing SBQ1-DCL-CIV-SBKXX-DR-CE-400001 in Appendix B, the location of which is to be agreed with the Client. A single electrical pillar is proposed to which the 4No. full retention interceptors shall be electrically connected.

The Client shall confirm the telemetry to be provided at the electrical pillar for each full retention interceptor, and any visual or audible alarms to be provided at the location of each full retention interceptor to suit the Client's monitoring regime.

4.4 Trenching

Warning tape shall be installed above the power cabling for the petrol interceptors. Colour coded tiles for identification at intervals not exceeding 700mm. The tape shall be PVC or polyethylene mesh at least 150mm wide incorporating tracer wire with colour coding in accordance with NJUG Guidelines on the Positioning of Underground Apparatus for New Development Sites.

4.5 Materials and Structural Form

Drains and outlets installed will generally be constructed using low corrosive materials as follows:

- Perforated pipes to be HDPE twin wall.
- Service connections 150mm diameter uPVC.
- Pipes up to 300mm diameter: uPVC or HDPE.
- Pipes 375mm diameter and larger: concrete, HDPE or GRP.

Typical circular manhole sizes to suit specific pipe diameters are listed below.

Largest Pipe in Manhole	Manhole Diameter (internal)
Less than 375mm	1200mm
375 - 450mm	1350mm
500 - 700mm	1500mm
750 - 900mm	1800mm

4.6 Manhole Frames and Covers

Manhole frames and covers, surface boxes and the like, are non-rocking, ductile iron complying with BS EN 124 (Class F900). Ductile iron gratings, covers and frame shall:

A) Provided as an interlocking proprietary product.

B) Coated with epoxy paint to a minimum DFT of 300 microns (2-pack epoxy), not to be applied to the mating faces. Protective treatment to be in accordance with BS EN ISO 12944 Part 5:2007 Table A.5.

However, where ductile iron covers and the like are manufactured with machine faces to fit within the frames, protective treatment shall be confined to exposed, nonmachined faces. Machine faces shall be coated with a suitable graphite grease.

Manholes are detailed at all changes in direction and at maximum intervals of 100m. Three sets of lifting keys shall be supplied for each type of:

- Reinforced concrete cover.
- Ductile iron cover.
- Proprietary non-metallic cover.
- Surface box.
- Grating.

All proprietary products shall be installed to manufacturer's specifications and recommendations.

4.7 Oil Separator

Prior to being discharged to the River Tees, the surface water drainage shall pass through 4no Klargester NSFA225 Class 1, full retention separators.

The separators will be provided with electrical connections which will be operated from an external kiosk. The location of the control unit is detailed on drawing SBQ1-DCL-CIV-SBKXX-DR-CE-400001 and shall be integrated into STDC's electrical deign strategy for Phase 1. All separators will be fitted with vent and alarm facilities located in an appropriate position to suit the Site and environment.

Proprietary flow control systems (Hydro-break or similar) will be installed in the chamber immediately upstream of each interceptor. The flow control systems will limit the peak discharge rate to each interceptor to 225l/s.

4.8 Outfalls

The 4no Outfalls are located within the front combi wall, located between tubular piles.

Tidal flap valves are provided on the seaward face of the wall at the outfall location. The flap valves shall be HDPE and fixings shall be stainless steel grade 316.

Penstocks shall be provided immediately upstream of the outfalls to enable safe maintenance works to the networks.

Penstocks are designed and manufactured to comply with BS 7775 with a flush invert. Penstocks will be provided with non-rising stem spindles. The spindles will be adequately supported over their length to ensure efficient operation when opening and closing.

The penstocks are manually operated by means of removable tee bars to be supplied with each Penstock.

4.9 Testing of Gravity Pipeline

All pipelines up to and including DN1000 shall be tested in accordance with Clause E7.3 of the Sewer Sector Guidance Appendix C – Design and Construction Guidance

5.0 ANALYSIS AND DESIGN METHODOLOGY

5.1 Surface Water Drainage System

The surface water drainage system was designed to achieve the most efficient layout with regards pipe sizing, number of manholes and full retention separators, with full consideration for the need to locate manholes and above surface equipment in locations which will cause minimal impact to operational areas.

5.2 Pavement Level Strategy

All surface gradients were set at a fall of 1V:80H with the surfacing falling from the caping beam to the drainage channel and rising again to the landward edge of the pavement (situated 50m landward of the capping beam). The gradients remain uniform over the 450m operational berth and the 2No. 90m transition zones/flares. The unbound pavement also fall towards a linear drain located in a 'valley' at the landward end of the heavy lift platform (i.e. circa 30m from the capping beam).

5.3 Pipe and Manhole Sizing

The surface water pipe and manhole sizing were determined using Innovyze Microdrainage which utilises the Modified Rational Method. The input parameters complied with those identified in Table 4-1. The Micro-drainage calculations for the storm networks are Provided in Appendix C.

Manhole sizing also complied with DCG Table B1 for which minimum nominal internal dimension of the manhole considered the nominal internal diameter of the largest pipe in the manhole. The network manhole schedule is presented in Appendix B.

5.4 Linear Drainage System

The linear drainage systems are to be formed using ACO QMax 900, ACO QMax 700 and ACO QMax550 channels. The general arrangement of the linear drainage systems are detailed in drawing SBQ1-DCL-CIV-SBKXX-DR-CE-400001-P05. The channels have been sized so not to flood out in a 1 in 30 year rainfall event. hydraulic design calculations are provided in appendix D.

5.5 Full Retention Interceptor

The 4no Klargester NSFA225 full retention separator will serve the proposed development. The units are stated by Kingspan to suitable for use for areas up to 12,500m² and a peak discharge rate of 225l/s.

The on site catchment area of each interceptor unit is approximately 8,310m² and the peak discharge rate for each catchment area in a 1 in 30 year event has been limited to 225l/s via the installation of flow control devices upstream of the interceptors.

During a 1 in 100 year + 40% CC storm event (15min winter) the peak discharge rate remains limited to 225l/s for each of the storm systems.

The total volume of flood water out of chamber within the storm drainage system is 200m³ over the full extent of the drainage system. The total flood storage capacity provided by the 450m length heavy lift zone and concrete pavement is 2,250m³. This increases to approximately 3,025m³ if the 180m length of unbound pavements at either end of the quay are included.

Therefore, during a 1 in 100 year +40% CC rainfall event all flood water will be retained within the site boundary as the storage potential of the site exceeds the predicted flood volume generated.

APPENDIX A – ACCEPTANCE IN PRINCIPLE (AIP) DOCUMENT

SBQ1-DCL-CIV-SBKXX-CA-CE-000006

SOUTH BANK QUAY PHASE 1

ACCEPTANCE IN PRINCIPLE – DRAINAGE SBQ1-DCL-CIV-SBKXX-RP-CE-000006-P03

February 2022

CONSULTING ENGINEERS

- » Civil Engineering
- » Structural Engineering
- » Traffic and Transportation
- » CDM Co-ordination
- » Project Management

Electronic Copy

DORAN CONSULTING

SOUTH BANK QUAY PHASE 1

ACCEPTANCE IN PRINCIPLE – DRAINAGE

SBQ1-DCL-CIV-SBKXX-RP-CE-000006-P03

February 2022

Job no	Prepared by	Checked by	Approved by	Status	Rev	Issued to	No of copies	Date
SBQ1	PMcM	SJQ	CD	S5	P03	GRAHAM	e*	10/02/22
SBQ1	PMcM	SJQ	CD	S5	P02	GRAHAM	e*	04/11/21
SBQ1	PMcM	SJQ	CD	S5	P01	GRAHAM	e*	05/10/21

Doran Consulting Limited Registered Office Norwood House 96-102 Great Victoria Street Belfast BT2 7BE

T 028 9033 3443

F 028 9023 5501

E mail@doran.co.uk

W www.doran.co.uk

Contents

1.0	INTRODUCTION	4
1.1	Description of the proposed Works	4
1.2	Objectives	5
1.3	Design Codes, Standards and Reference Documents	5
2.0	DEFINITIONS & ABBREVIATIONS	7
2.1	Acronyms & Abbreviations	7
3.0	FUNCTIONAL LAYOUT	8
4.0	DESIGN PHILOSOPHY AND METHODOLOGY	9
4.1	Design Philosophy	9
4.2	Design Parameters	10
4.3	Location of Above Ground Equipment	
4.4	Trenching	
4.5	Materials and Structural Form	12
4.6	Manhole Frames and Covers	13
4.7	Oil Separator	14
4.8	Outfalls	15
4.9	Testing of Gravity Pipeline	15
5.0	ANALYSIS AND DESIGN METHODOLOGY	
5.1	Surface Water Drainage System	16
5.2	Pavement Level Strategy	16
5.3	Pipe and Manhole Sizing	16
5.4	Full Retention Interceptor	17
6.0	PROPOSED OUTLINE OF FULL DESIGN PACKAGE	

APPENDIX A – DEFINITION DRAWING APPENDIX B – ENGINEERING SKETCHES

1.0 INTRODUCTION

1.1 Description of the proposed Works

The purpose of the Works is to create a staging and manufacture hub, for offshore wind developments, on the River Tees. The proposed works (Phase 1) aims to deliver 450m of operational berth suitable for suitable extension to 1035m of operational berth in future and comprises the following:

- Demolition of the existing wharf, jetties and associated infrastructure
- Construction of 450m of quay plus transition flares at each end. The quay wall will comprise a steel combi-wall connected by tie rods to an anchor wall inland of the quay.
- Capital dredging to create a new berth pocket and deepen the approach channel
- Pavement construction comprising;
 - Reinforced concrete pavement provided over a 50m wide strip parallel with the Phase 1 quay works as follows:
 - A zone 150m long to the NE of the heavy-lift platform.
 - A zone 150m long to the SW of the heavy-lift platform.
 - A zone 20m wide landward of the heavy lift platform.
 - Unbound pavements shall be provided over a 50m wide strip parallel with the Phase 1 quay works as follows:
 - A zone 90m long at the NE transition flare.
 - A zone 90m long at the Phase 1/Phase 2 transition flare.
- Surface water drainage to pavement areas

• Mechanical and Electrical system, including potable and firewater distribution system and spare duct network.

1.2 Objectives

This Acceptance in Principle (AIP) document provides an overview of the design parameters and design approach for elements relating to the Surface Water Drainage System.

1.3 Design Codes, Standards and Reference Documents

The design shall be carried out in accordance with the codes and standards as stated in the Royal Haskoning DHV document titled *"Specification, South Bank Quay Phase 1, Scope Part 2 – Technical".* A non-exhaustive summary of the principal codes, standards and design guidance used are provided in Table 1-1 below. The Project Manager will be informed of any departures from Normal Standards if they are identified during the Detailed Design phase.

Standard No.	Title					
Eurocodes						
BS EN 1990	Eurocode 0: Basis of structural design*					
BS EN 1991-1	Eurocode 1: Actions on structures*					
BS EN 1992-1	Eurocode 2: Design of concrete structures*					
BS EN 1993-1	Eurocode 3 Design of steel structures*					
BE EN 1993-5	Eurocode 3: Design of steel structures - Part 5: Piling*					
BS EN 1997-1	Eurocode 7: Geotechnical design: General rules*					
EN 1993-5	Eurocode 3: Design of steel structures: Piling*					
*And associated UK Na	*And associated UK National Annexes					
British Standards	British Standards					
BS 6349-1-1	Maritime works, Part 1-1 – General - Code of practice for planning and design for operations					
BS 6349-1-2	Maritime works, Part 1-2 – General - Code of practice for assessment of actions					
BS 6349-1-3	Maritime works, Part 1-3 – General - Code of practice for geotechnical design					
BS 6349-1-4	Maritime works, Part 1-4 – General - Code of practice for materials					

BS 6349-2	Maritime works, Part 2 – Code of practice for design of quay walls, jetties and dolphins	
BS 6349-5	Maritime works, Part 5 – Code of practice for dredging and land reclamation	
Design Guides and Additional References		
CIRIA C760,	Guidance on embedded retaining wall design	
CIRIA C504	Engineering in glacial tills	
CIRIA C570	Engineering in Mercia Mudstone	
EAU 2012	Recommendations of the Committee for Waterfront Structures Harbour and Waterways (9 th Edition)	
-	Pile Design and Construction Practice, Sixth Edition by MJ Tomlinson and J Woodward	
-	ArcelorMittal Piling Handbook 9 th Edition	
Design Guides and Additional References – Surface Water Drainage System		
Design and Construction Guidance	Design and Construction Guidance for foul and surface water sewers offered for adoption under the Code for adoption agreements for water and sewerage companies operating wholly or mainly in England ("the Code"), May 2021.	
BS EN 16933-2:2017	Drain and Sewer Systems Outside Buildings - Design - Part 2: Hydraulic Design.	
BS EN 752:2017	Drain and Sewer Systems Outside Buildings – Sewer System Management.	
-	Building Regulations Approved Document H – Drainage and Waste Disposal.	
_	Sewer Sector Guidance Appendix C – Design and Construction Guidance	
BS EN 1295-1: 2019	Structural design of buried pipelines under various conditions of loading	
PIANC WG 165	Design and maintenance of Container Terminal Pavements	

Table 1-1: Design Codes and Standards

2.0 **DEFINITIONS & ABBREVIATIONS**

2.1 Acronyms & Abbreviations

Full Title	Abbreviation
Acceptance in Principle	AIP
Accelerated Low Water Corrosion	ALWC
Chart Datum	CD
Geotechnical Design Report	GDR
Geotechnical Interpretative Report	GIR
Highest Astronomical Tide	НАТ
Lowest Astronomical Tide	LAT
kilo Newton	kN
Mean High Water Springs	MHWS
Mean Low Water Springs	MLWS
Microbiologically Induced Corrosion	MIC
Ordnance Datum	OD
Percentage Impermeable Proportion	PIMP
Serviceability Limit State	SLS
Ultimate Limit State	ULS
Uniformly Distributed Load	UDL

Table 2-1: Acronyms & Abbreviations

3.0 FUNCTIONAL LAYOUT

The drainage area is defined by the capping beam, concrete pavement area on Definition Drawing PC1084-RHD- SB-DN-DR-C-1392 (450m x 50m) and the unbound pavements at the 2No. transition zones measuring 90m x 50m.

The tie-in levels, and hence drainage strategy landward of the drainage area defined above is to be confirmed by the Client. It is assumed that run-off from areas out with this drainage area is not to be incorporated in the South Bank Quay Phase 1 drainage design covered by this Acceptance in Principle.

This paved area comprises;

- Reinforced concrete pavement provided over a 50m wide strip parallel with the Phase 1 quay works as follows:
 - A zone 150m long to the NE of the heavy-lift platform.
 - A zone 150m long to the SW of the heavy-lift platform.
 - A zone 20m wide landward of the heavy lift platform.
- Unbound pavements shall be provided over a 50m wide strip parallel with the Phase 1 quay works as follows:
 - A zone 90m long at the NE transition flare.
 - A zone 90m long at the Phase 1/Phase 2 transition flare.
- Capping beam, varying in width between 2.75m typically to 1.2m at the NE transition flare.

The drainage strategy immediately landward of the 50m transition pavement, and 50m pavement across the 450m berth, is assumed to be incorporated in the Client's (STDC's) site wide drainage strategy and not incorporated in this AIP.

4.0 DESIGN PHILOSOPHY AND METHODOLOGY

4.1 Design Philosophy

The surface water drainage system will be designed in accordance with Scope Part 2. The primary function of the storm water drainage system is to collect surface runoff from the quay paving in an efficient manner. The drainage area shall include the capping beam, 450m x 50m concrete pavement and 2No. 90m x 50m unbound transition zone (/flare) pavements.

The surface water drainage system shall drain surface water from the paved areas under gravity, and discharge to the River Tees via Class 1 full retention interceptors and outfalls located within the combi wall. Full retention separators shall be located upstream of each outfall to capture hydrocarbons and debris. A penstock shall be provided downstream of each separator to prevent discharge into the River Tees where required. Tidal flap valves shall be fitted to the seaward side of the outfall to prevent water from the River Tees entering the drainage system.

A linear drainage system at the landward edge of the proposed 30m wide heavy lift platform, is proposed in lieu of the centreline of the 50m pavement strip, so as to reduce encroachment into the heavy lift platform operational area.

It is assumed that the area landward of the 50m pavement shall be included within the Client's (STDC's) site wide drainage strategy.

The design of the surface water drainage system shall accommodate ground settlement expected during the design life.

4.2 Design Parameters

The Design Inputs and Parameters for the Surface Water Drainage design are outlined in Table 4-1 below. References to the relevant sections of the Employer's Requirements are provided.

	DESIGN PARAMETERS
Design Life	Ref Scope Part 2: Cl 1.4 <u>Valves, Hydrants and Fittings</u> : 25years (normal and routine maintenance required in accordance with manufacturer's instructions)
	Surface Water Drainage Pipework: 50 years based on routine maintenance (annual (or as required) inspection for blockages and signs of damage. Removal of blockages, silt and debris is required).
	Surface Water Drainage Manholes and Gullies: 50 years based on routine maintenance (annual (or as required) inspection for blockages and signs of damage. Removal of blockages, silt and debris is required).
	<u>Oil Separators:</u> 50 years (normal and routine maintenance required in accordance with manufacturer's instructions)
Climate Change Allowance	40% to be used in the drainage design (Upper end – 2060 to 2115)
(ref Scope 2 Cl 14.2)	
Rainfall Data (ref Scope 2 Cl 14.2)	To be obtained using Flood Studies Report (FSR) Flood Estimation Handbook (FEH) 2013
Time of Entry (ref Scope 2 Cl 14.2)	4 minutes
Volumetric Runoff Coefficient for Summer	0.75
(ref Scope 2 Cl 14.2)	

Volumetric Runoff	0.84
Coefficient for Winter	
(ref Scope 2 Cl 14.2)	
Gravity Pipe	Concrete pipes: 0.6
Roughness (k) (mm)	HDPE and uPVC (smooth internal bore): 0.015
(ref Scope 2 Cl 14.2)	
PIMP for all	100%
hardstanding areas	
(ref Scope 2 Cl 14.2)	
Minimum self-	1.0
cleansing velocity	
(m/s) 1.0	
(ref Scope 2 Cl 14.2)	
Minimum depth of	The minimum cover to pipes shall be;
cover to crown	Road / Trafficked Area: 1.2m
(ref Scope 2 Cl 14.6)	Where the depth of cover is less than the minimum value, pipes shall be
	protected by a concrete surround.
Minimum Hydraulic	□ 1 in 2 year – no surcharging of the network
Performance	\square 1 in 30 year – design not to flood any part of the site
Requirements per	□ 1 in 100year + Climate change – flooding to remain on site, buildings to
Return Period	be protected
(ref Scope 2 Cl 14.2)	
Differential	Additional falls shall be provided to ensure that after predicted settlement,
Settlement	the slopes of the pipes will be sufficient for the drainage system to comply with the design criteria
	with the design criteria.
Minimum Slope	Generally 1/D for gravity pipes, where D is the diameter in mm.
Catchment Area	Refer to Drawings in Appendix B.

Table 4-1: Design parameters

4.3 Location of Above Ground Equipment

All above ground equipment, such as electrical control cabinets/mini pillars, warning beacons etc) shall be located clear of main trafficked routes and normal plant operating areas. Where they could be vulnerable to accidental impact from vehicles, they shall be protected by bollards and vehicle restraint barriers.

An electrical mini pillar is shown on drawing SBQ1-DCL-CIV-SBKXX-DR-CE-400001 in Appendix B, the location of which is to be agreed with the Client. A single electrical pillar is proposed to which the 4No. full retention interceptors shall be electrically connected.

The Client shall confirm the telemetry to be provided at the electrical pillar for each full retention interceptor, and any visual or audible alarms to be provided at the location of each full retention interceptor to suit the Client's monitoring regime.

4.4 Trenching

Warning tape shall be installed above surface water ducts. Colour coded table shall be suitably inscribed for identification at intervals not exceeding 700mm. The tape shall be PVC or polyethylene mesh at least 150mm wide incorporating tracer wire with colour coding in accordance with NJUG Guidelines on the Positioning of Underground Apparatus for New Development Sites (Note that red tape is to be installed above surface water pipes).

4.5 Materials and Structural Form

Drains and outlets installed shall generally be constructed using low corrosive materials as follows:

- Perforated pipes to be HDPE twin wall.
- Service connections 150mm diameter uPVC.
- Pipes up to 300mm diameter: uPVC or HDPE.
- Pipes 350mm diameter and larger: concrete, HDPE or GRP.

Typical circular manhole sizes to suit specific pipe diameters are listed below. These should be used as a guide for the minimum size required when developing the gravity designs.

Largest Pipe in Manhole	Manhole Diameter (internal)
Less than 375mm	1200mm
375 - 450mm	1350mm
500 - 700mm	1500mm
750 - 900mm	1800mm

4.6 Manhole Frames and Covers

Manhole frames and covers, surface boxes and the like, shall be non-rocking, ductile iron complying with BS EN 124 (Class F900). Ductile iron gratings, covers and frame shall:

A) Provided as an interlocking proprietary product.

B) Coated with epoxy paint to a minimum DFT of 300 microns (2-pack epoxy), not to be applied to the mating faces. Protective treatment to be in accordance with BS EN ISO 12944 Part 5:2007 Table A.5.

However, where ductile iron covers and the like are manufactured with machine faces to fit within the frames, protective treatment shall be confined to exposed, nonmachined faces. Machine faces shall be coated with a suitable graphite grease.

Manholes shall be located at changes in direction and at maximum interval of 100m (ref. Scope Part 2 Cl 14.6).

Three sets of lifting keys shall be supplied for each type of:

- Reinforced concrete cover.
- Ductile iron cover.
- Proprietary non-metallic cover.
- Surface box.
- Grating.

All proprietary products shall be installed to manufacturer's specifications and recommendations.

Where manholes are provided with concrete covers, these shall be designed to resist the effects of:

- (a) Repetitive heavy wheel loads due to heavy port equipment.
- (b) Adequate space to allow for easy maintenance access.

(c) Limiting the size of cover for ease of handling and/ or having smaller personnel access covers.

- (d) The provision of suitable lifting sockets.
- (e) The seating of the cover within its frame to ensure non-rocking.

4.7 Oil Separator

Prior to being discharged to the River Tees, the surface water drainage shall pass through a Class 1, full retention separator certified to BS EN 858 and in accordance with Environment Agency guidance.

All separators will be provided with electrical connections which shall be operated from an external kiosk. The location of the control units will be finalised during the final detailed design stage and shall be integrated into STDC's electrical deign strategy for Phase 1. All separators will be fitted with vent facilities located in an appropriate position to suit the Site and environment.

All fittings for the separators shall suit the geology and surroundings of the Site (Maritime Environment).

4.8 Outfalls

Outfalls shall be located within the front combi wall, located between tubular piles.

Tidal flap valves shall be provided on the seaward face of the wall at the outfall location. The opening angle of the flap valve shall be considered with regards mitigating interference with berth operations. The flap valves shall be HDPE and fixings shall be stainless steel grade 316.

Penstocks shall be provided immediately upstream of the outfalls to enable safe maintenance works to the networks.

Where required, penstocks shall be designed and manufactured to comply with BS 7775 with a flush invert. Penstocks shall be provided with non-rising stem spindles. Spindles shall be adequately supported over their length to ensure efficient operation when opening and closing.

Penstocks shall be manually operated by means of removable tee bars to be supplied with each Penstock.

4.9 Testing of Gravity Pipeline

All pipelines up to and including DN1000 shall be tested in accordance with Clause E7.3 of the Sewer Sector Guidance Appendix C – Design and Construction Guidance

5.0 ANALYSIS AND DESIGN METHODOLOGY

5.1 Surface Water Drainage System

The surface water drainage system shall be designed to achieve the most efficient layout with regards pipe sizing, number of manholes and full retention separators, with full consideration for the need to locate manholes and above surface equipment in locations which will cause minimal impact to operational areas.

5.2 Pavement Level Strategy

A fall of 1V:80H will be considered from the 'peaks' at the seaward edge of the capping beam and landward edge of the pavement situated 50m landward of the capping beam (over the 450m operational berth and 2No. 90m transition zones/flares). The pavement shall fall towards a linear drain located in a 'valley' at the landward end of the heavy lift platform (i.e. circa 30m from the capping beam). Autodesk Civils 3D shall be used to model the finished ground level and hence shall be used to obtain catchment areas.

A settlement analysis will be undertaken to determine the predicted settlement across the site for which the effect on the pavement and pipe gradients shall be determined. The hydraulic design shall make allowance for this. The gatic / linear drain outlet to the interceptor shall be provided with a steeper gradient than required by design, and rocker pipe connection provided, to allow for settlement and maintain gravity flow.

5.3 Pipe and Manhole Sizing

The surface water pipe and manhole sizing shall be determined using Innovyze Microdrainage which utilises the Modified Rational Method. The input parameters will comply with those identified in Table 4-1.

Manhole sizing shall also comply with DCG Table B1 for which minimum nominal internal dimension of the manhole shall consider the nominal internal diameter of the largest pipe in the manhole.

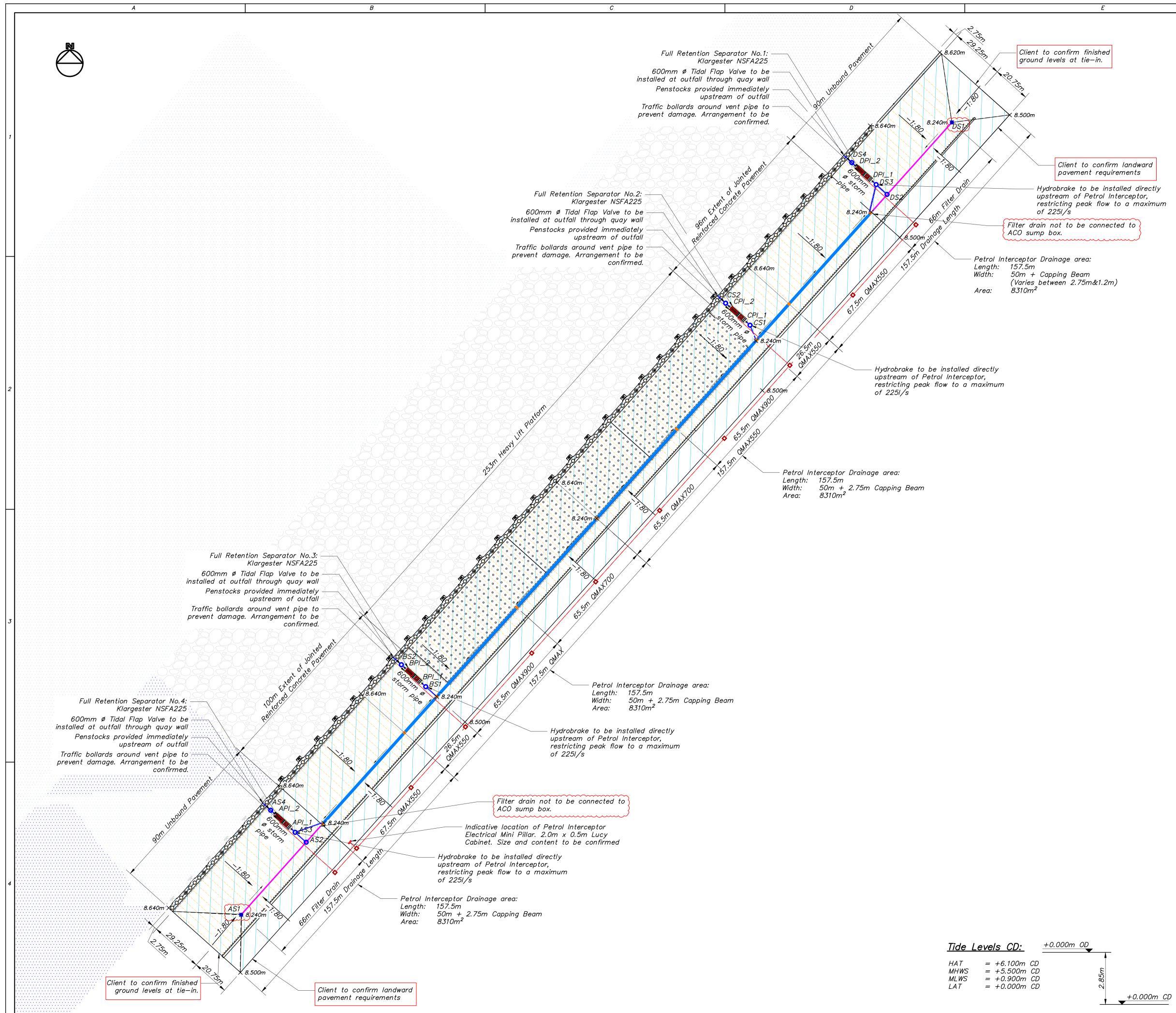
5.4 Full Retention Interceptor

The full retention separator size shall be selected based on the catchment area and shall be sized to ensure throttling does not occur.

6.0 PROPOSED OUTLINE OF FULL DESIGN PACKAGE

The Full Design Package will include the following in accordance with Scope Part 2 Cl 7.6:

- 1. Accepted Acceptance in Principle Document
- 2. Detailed Design Calculations and Design Risk Assessments;
 - a. Introduction
 - i. Objectives
 - ii. Reference Documents
 - iii. Design Standards
 - b. Definitions
 - c. Functional Layout
 - d. Design Philosophy and Methodology
 - i. Structural description
 - ii. Design philosophy
 - iii. Analysis and design methodology
 - e. Structural Analysis Input
 - i. Structural model geometry
 - ii. Materials properties
 - iii. Section properties
 - iv. Model supports and connections
 - v. Basic loads



- vi. Load combinations
- f. Structural Analysis Output
- g. Structural Design
- 3. Design Calculations Engineering Sketches
- 4. Construction Sequence
- 5. Design Certificate and Design Check Certificate

APPENDIX B: GENERAL ARRANGEMENT DRAWINGS

SBQ1-DCL-CIV-SBKXX-CA-CE-000006

Rev.	Date	By	Check	Details	Appr.
P01	12/11/21	CB	PMM	First Issue	CD
P02	03/02/22	CB	PMM	Drainage plan amended.	CD
P03	10/02/22	CB	PMM	Unbound Area Amended.	CD
P04	24/03/22	СВ	РММ	Manholes Numbered. Pipe sizes amended. Notes added.	CD
P05	05/05/22	СВ	РММ	HLP Extended. Qmax sizes updated. Notes added. Manholes updated.	CD

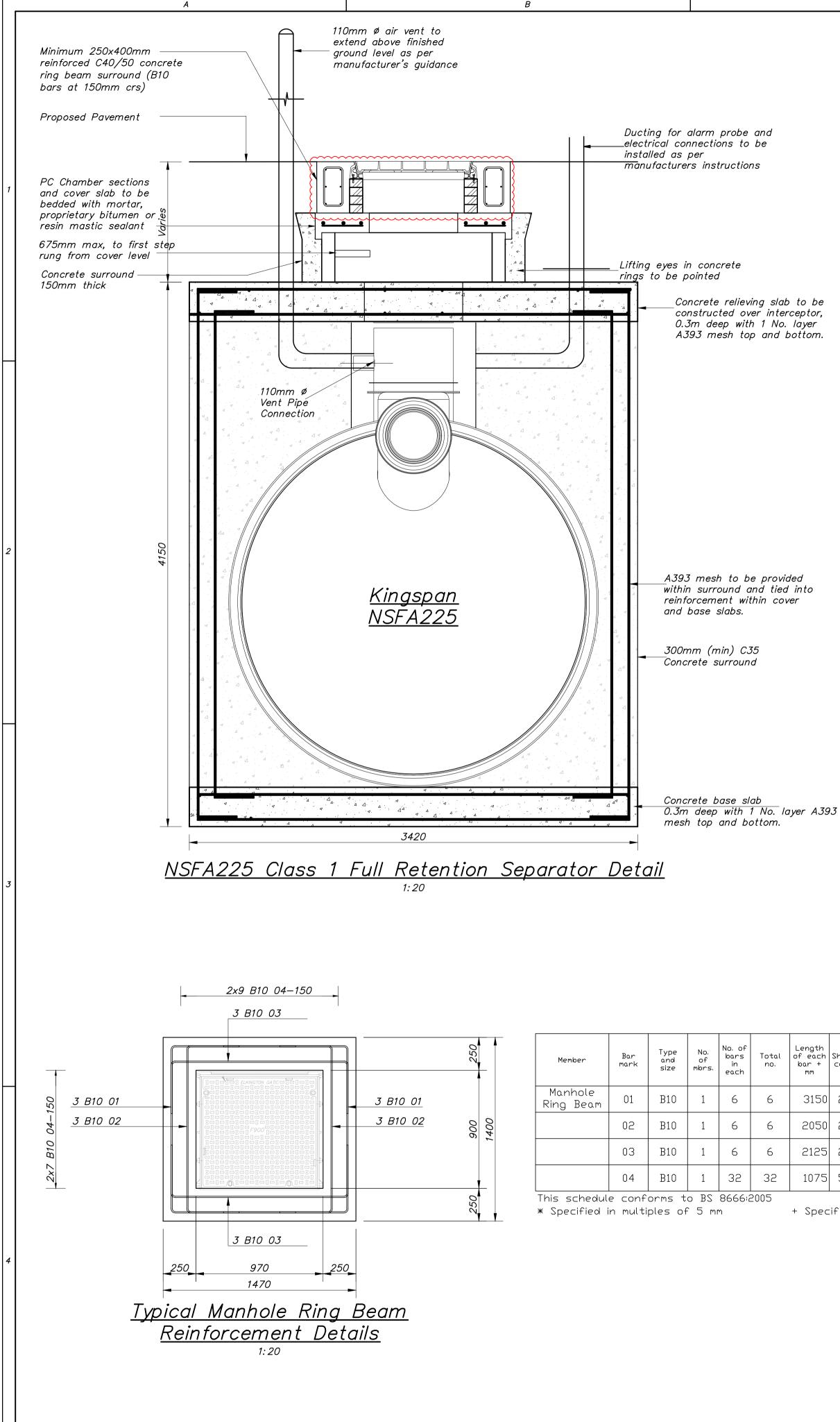
<u>Notes</u>

- 1. All dimensions in mm unless noted otherwise.
- 2. All levels in metres to Chart Datum (CD).
- 3. Full retention separators to be Karlgester NSFA225 or approved equal.
- 4. Tidal flap valves to be Althon 600mm tidal flap valves or approved equal.
- 5. The Multispan access cover located over the 4no filter access points on top of the full retention seperator to be DM/F Loading Class F900 4000mm x 1200mm Gatic Access Cover
- 6. Covers to storm chambers to be load class F900 in accordance with BS EN 124. Covers shall be coated with epoxy paint to a minimum DFT of 300 microns (2 Pack epoxy) protective treatment to be in accordance with BS EN ISO 12944 Part 5.
- 7. Penstocks shall be provided with non-rising stem spindles. Spindles shall be adequately supported over their length to ensure efficient operation when opening and closing the door. Penstocks shall be manually operated by means of removable tee bars to be supplied with each Penstock
- 8. Traffic Bollard protective coating finish colour shall be RAL 1016 Sulphur Yellow.

<u>Legend</u>	
	ACO Channel
a arara a arar a arar a arar a	Storm Pipe
• ••••• ••	Petrol Interceptor
	Filter Drain
•	Storm chamber with F900 cover
1.0	ACO QMAX Access Chamber F900
	Drainage Area
	Petrol Interceptor Alarm Probe Ducting Route and Chamber
-	Petrol Interceptor MIni Pillar
	Unbound Pavement
	Jointed Reinforced Concrete Pavement

ISSUED FOR APPROVAL

Project Title: South Bank Quay (Phase 1) Teesworks Drawing Title: River Quay Proposed Drainage Layout Sheet 1 Client/Architect: GRAHAM Date: CB Nov 2021 Drawn by: Checked by: RH Scales: 1:1000 Approved by: CD Sheet Size: A1 Doran Project No. 2110118B Status: S5 Project No. Orig. Role. Volume/Level. Form. Disc. Number.



SBQ1

DCL CIV SBKXX DR CE 400001 P05

Norwood House 96-102 Great Victoria Street, Belfast BT2 7BE ⊺ 028 90333443

F 028 90235501 E mail@doran.co.uk

Cover to be Gatic (or approved equal or better) load class F900. Minimum 250x400mm reinforced - $\overline{/}$ C40/50 concrete ring beam surround (B10 bars at 150mm crs) -1-4 courses of Class B Min, clear access 675mm ____ cover frame seating rings 675mm max, to first step rung from cover level Lifting eyes in concrete and cover slab to be bedded rings to be pointed Refer to Table or resin mastic sealant Concrete surround 150mm thick for PC ring diameter High-strength concrete topping to be brought up to a dense, smooth -Chamber height face, neatly shaped and finished to (not less than 900mm.) all branch connections (minimum thickness 20mm.) In-situ concrete to be GEN3-(designed to BRE Special Digest 1 Concrete in Aggressive Ground.) Self-cleaning toe holes to be ______ 4 A A. provided where channel exceeds min, 50mm to max, 300mm 600mm width · 4.4 Inverts formed using channel pipes A A A A A A

<u>Typical Manhole Detail – A</u>

· 4 · 4

A . A

. d . .

1:20 Maximum depth from cover level to soffit of pipe 3.0m Pipe size *≼*450mm

Joint to be as close as possible to face of manhole to permit satisfactory joint and subsequent

> Double step rungsin accordance with BS EN 13101

movement

Total no.	Length of each bar + mm	Shape code	A * mm	B* mm	C* mm	D* mm	E/R* mm	Rev letter
6	3150	21	950	1275	(950)			
6	2050	21	400	1275	(400)			
6	2125	21	400	1350	(400)			
32	1075	51	150	300	(130)	(130)		
005								

+ Specified in multiples of 25 mm

-Refer to Clause 3.6.6.2 for rocker pipe details Pipe joint with channel to be located min, 100mm inside face of manhole 900mm ┟╼╢╼ min. -Minimum width of benching to be 225mm 450mm min, Safety Chain and guardrail required. Toe Hold and handfold required. For details of safety chain and handhold see DMRB drawing number F10. For details of safety guard rail and toe hold see DMRB drawing number F28 In poor/aggressive ground conditions full depth concrete surround is required and should be designed to BRE Special Digest 1 Concrete in Aggressive Ground

<u>Typical Manhole – A Sectional Plan</u> 1:20

Maximum depth from cover level to soffit of pipe 3.0m Pipe size ≼450mm

Rev.	Date	By	Check	Details	Appr.
P01	12/11/21	CB	РММ	First Issue	CD
P02	29/01/22	CB	РММ	Petrol Interceptor Updated.	CD
P03	11/02/22	CB	РММ	Status Updated to S5.	CD
P04	23/03/22	CB	РММ	Table added.	CD
P05	05/05/22	CB	РММ	Ring Beam Amended	CD

Nominal diameter of largest pipe in manhole (mm)	Mnimum nominal internal diameter of manhole (mm)				
Less than 375	1200				
375–400	1350				
500-700	1500				
750–900	1800				
Greater than 900	Pipe diamter + 900				

engineering bricks, concrete blocks or precast concrete

-PC concrete manhole sections with mortar, proprietary bitumen

Benching slope to be 1:10 to 1:30

Bottom of PC section to be built -into base concrete min, 75mm

Distance between top of pipe & underside of PC section to be

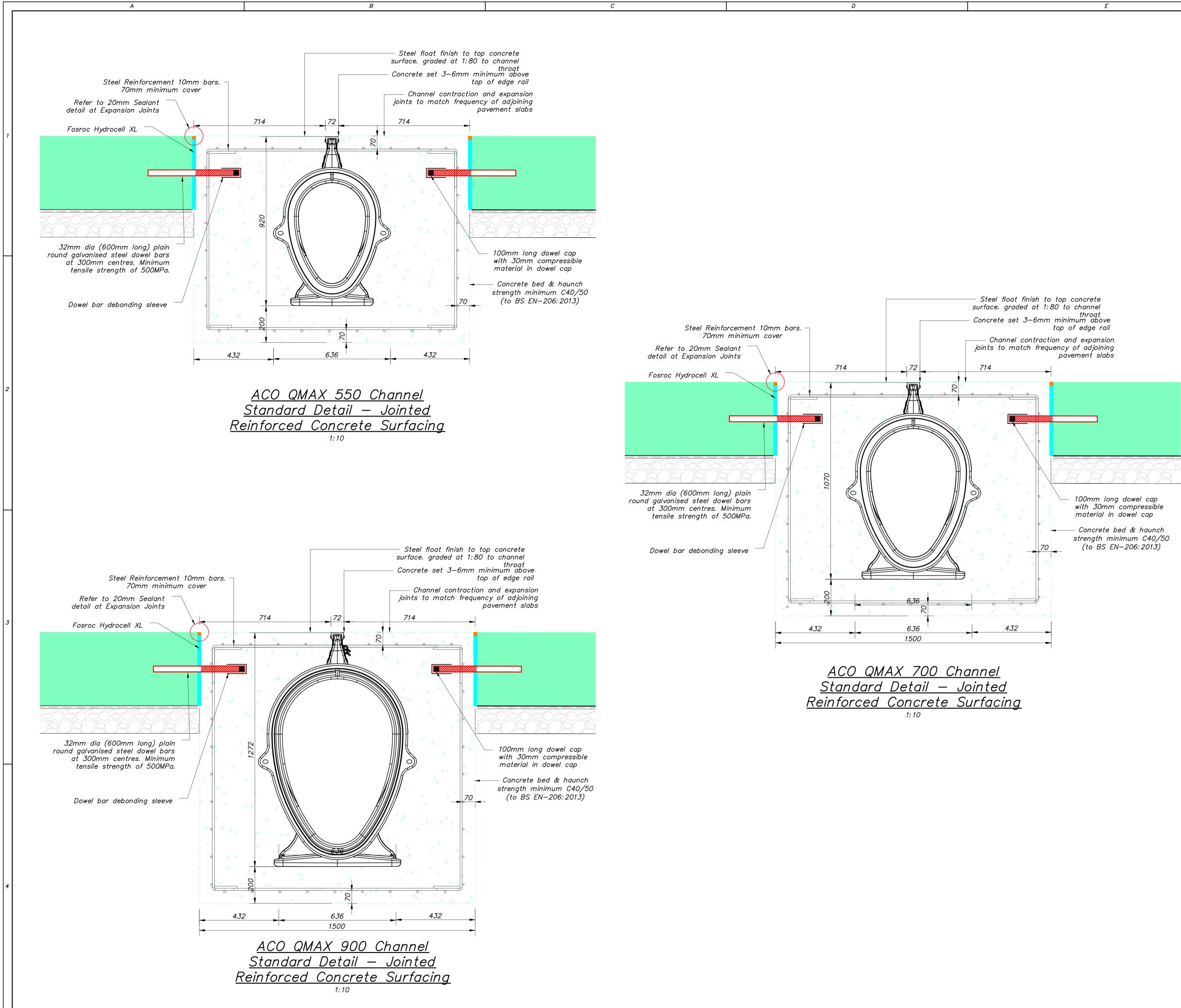
225mm to underside of pipe

<u>Notes</u>

- 1. All dimensions in mm unless otherwise stated.
- 2. All levels in metres above Chart Datum (CD) unless outherwise noted
- 3. Chart datum at Teesport is 2.850m below Ordnance Datum (OD)
- 4. Full retention separators to be Klargester NSFA225 or approved equal.
- 5. Tidal flap valves to be Althon 450mm tidal flap vales or approved equal
- 6. The Multispan access cover located over the 4no filter access points on top of the full retention seperator to be DM/F Loading Class F900 4000mm x 1200mm Gatic Access Cover.
- 5. Covers to storm chambers to be load class F900 in accordance with BS EN 124. Covers shall be coated with epoxy paint to a minimum DFT of 300 microns (2 Pack epoxy) protective treatment to be in accordance with BS EN ISO 12944 Part 5.

ISSUED FOR APPROVAL

Project Title:


South Bank Quay (Phase 1)

Teesworks

Drawing Title:

Drainage Standard Details Sheet 1

Client/Archite	ect:	GRAHAM							
Drawn by:		СВ			Da	te:	Nov 20	021	
Checked by:		RH			Sc	Scales: As Show			
Approved by	:	CD			Sh	Sheet Size: A1			
Doran Projec	t No.	2110118B			Sta	atus:	S5		
Project No.	Orig.	Role.	Volume/Level.	Form.	Disc.	Number		Revi	
SBQ1	DCL	CIV	SBKXX	DR	CE	400	002	P05	
			ran			Norwood 96-102 G Belfast B ⊤ 028 90	areat Victo T2 7BE	oria Street,	
						F 028 90 E mail@o W www.o	doran.co.u		

Rev.	Date	By	Check	Details	Appr.
P01	12/11/21	CB	РММ	First Issue	CD
P02	02/02/22	CB	РММ	Details updated.	CD
P03	10/02/22	CB	РММ	Filter Drain Added.	CD
P04	24/03/22	CB	РММ	Filter Drain Amended.	CD
P05	05/05/22	CB	РММ	QMAX900 Added.	CD

<u>Notes</u>

- 1. All dimensions in mm unless otherwise stated.
- 2. All levels in metres above Chart Datum (CD) unless outherwise noted
- 3. Chart datum at Teesport is 2.850m below Ordnance Datum (OD)

ISSUED FOR APPROVAL

Project Title:

South Bank Quay (Phase 1)

Teesworks

Drawing Title:

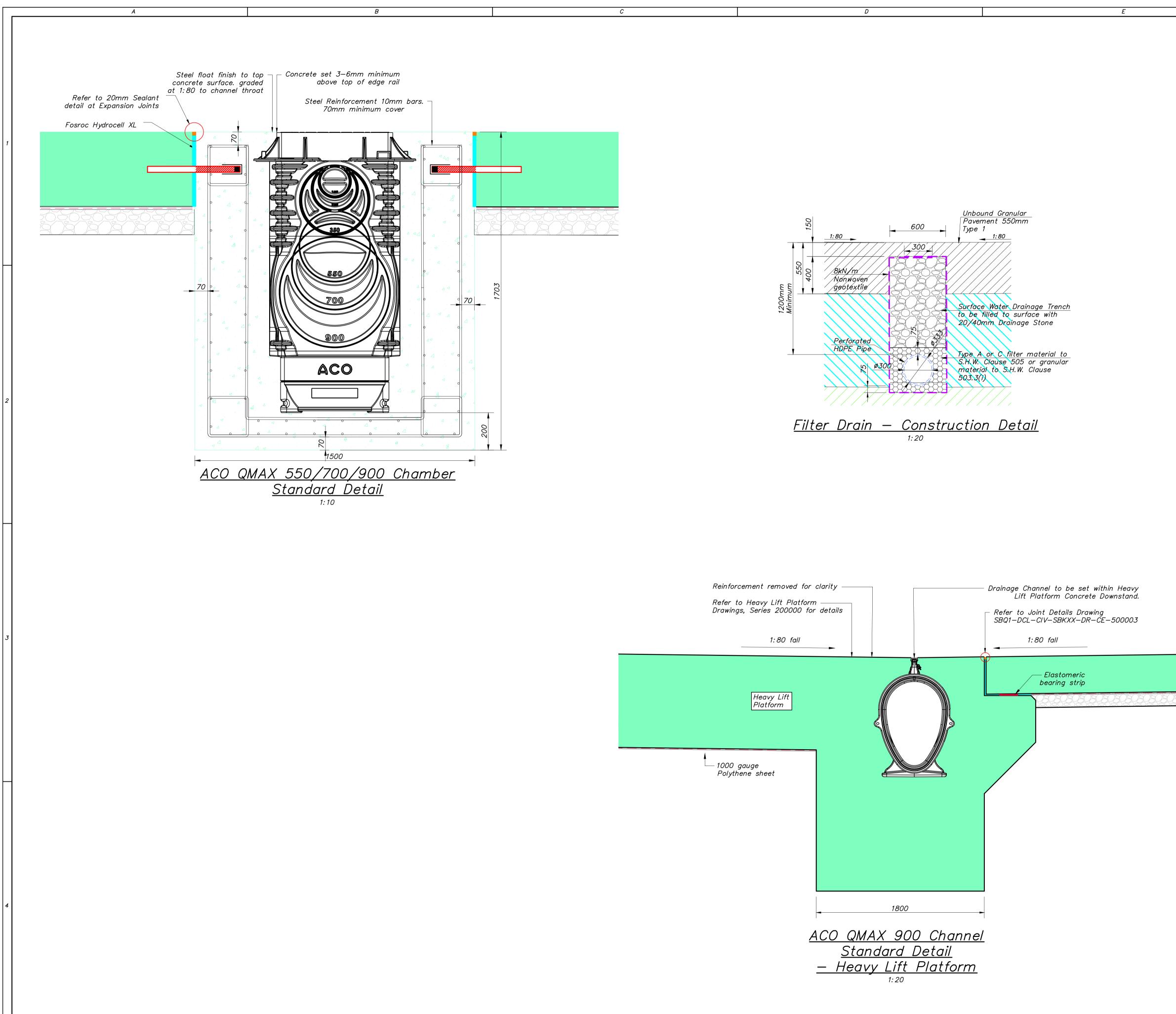
Drainage Standard Details Sheet 2

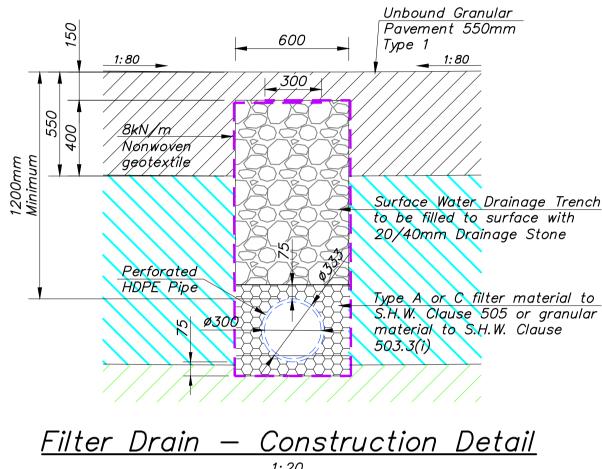
Client/Archite	ct:	GRAHAM						
Drawn by:		СВ			Da	te:	Nov 2021	
Checked by:		RH			Sc	ales:	As Shown	
Approved by:		CD			Sh	eet Size:	A1	
Doran Projec	t No.	2110118B			Sta	atus:	S5	
Project No.	Orig.	Role.	Volume/Level.	Form.	Disc.	Number		Revi
SBQ1	DCL	CIV	SBKXX	DR	CE	400	003	P05
			ran			Norwood 96-102 G Belfast B	ireat Victo	oria Street,
		_	NSUL ⁻		G	T 028 90 F 028 90 E mail@o		uk
	D	ELIVERING	ENGINEERING	EXCELLE	ENCE	W www.c	loran.co.u	ık

MANHOLE SCHEDULE Sheet 1 of 2

В

Α


	Manhole Number	Cover Level				Pipe		Manhole	Ту	pes
	Coordinates	Depth To Invert	Connections		Code	Inverts	Dimensions (mm)	Size	Manhole	Cover
	AS1	8.240					(mm)			
Е.	453459.404	1.500	\bigvee					1200	Туре ЗА	F900
N.	522510.408		0	0	1.000	6.740	300			
	AS2	8.240		1 2	1.000 2.000	6.740 6.740	300 300			
Е. N.	453494.634 522549.809	1.500		о	1.000	6.740	600	1800	Type 3C Silt Pit	F900
	AS3	8.342	1 2	1 2	1.001 1.001	6.418 7.207	600 600		Type 3C	
E. N.	453488.661 522555.193	2.842		0	1.002	5.500	600	1800	Back Drop & Hydrobrake	F900
	API_1	8.380	1	1	1.002	5.400	600		Petrol	
E. N.	453486.431 522557.245	2.980	\bigcup_{o}			5 /00			Interceptor Inlet	F900
				0 1	1.003 1.003	5.400 5.300	600 600			
	API_2	8.529 3.229							Petrol Interceptor Outlet	F900
E. N.	453477.523 522565.252		V 0	0	1.004 1.004	5.300	600 600			
	AS4	8.566 3.366						1800	Type 3C Penstock	F900
E. N.	453475.315 522567.216		↓ •	0	1.005	5.200	600			
	AOut	8.640	\bigcirc	1	1.005	5.000	600			
E. N.	453470.930 522571.153	3.640							Outfall	
	BS1	8.342		1	1.001	6.944	600		Type 3C	
E. N.	453560.110 522634.789	2.842	↓ ₀	о	1.002	5.500	600	1800	Báck Drop & Hydrobrake	F900
	BPI_1	8.380	1	1	1.002	5.400	600		Dot-s'	
Е. N.	453557.880 522636.841	2.980	\bigcup_{o}	0	1.003	5.400	600		Petrol Interceptor Inlet	F900
	BPI_2	8.529	1	1	1.003	5.300	600		Botrol	
E. N.	453548.972 522644.848	3.299	$\bigcup_{v \in O}$	о	1.004	5.300	600		Petrol Interceptor Outlet	F900
	BS2	8.566		1	1.004	5.200	600 600		Time 70	
E. N.	453546.764 522646.812	3.366	↓ ₀	о	1.005	5.200	600	1800	Type 3C Penstock	F900
	BOut	8.640	\bigcap	1	1.005	5.000	600			
E. N.	453542.402 522650.727	3.640							Outfall	


D

Ε

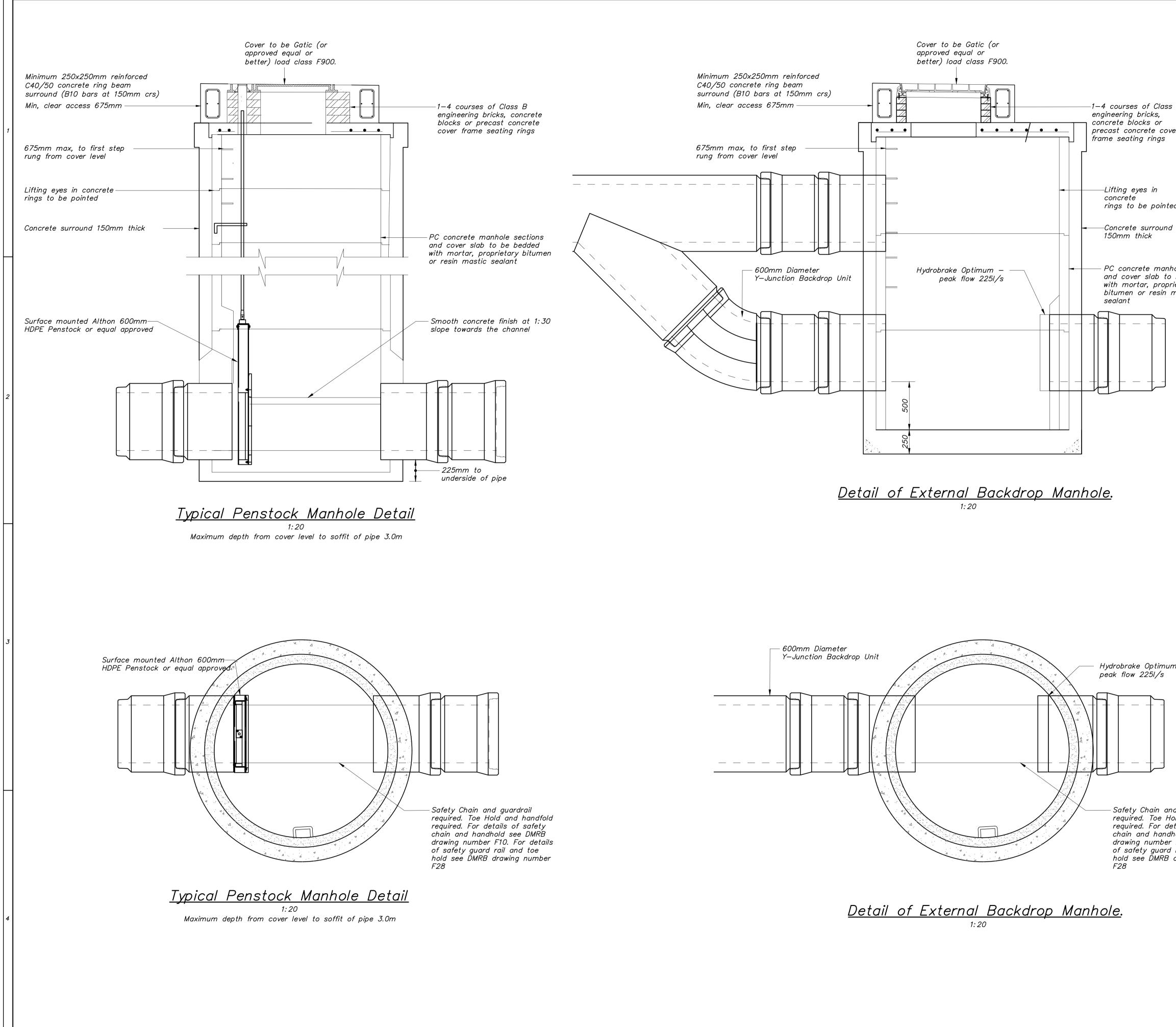
Mani Num		Cover Level				Pipe		Manhole Size	Ту	pes
Coord	inates	Depth To Invert	Connections		Code	Inverts	Dimensions (mm)		Manhole	Cover
C	S1	8.342	1	1	1.001	6.944	600		Type 3C	
	3737.534 2832.446	2.842	, o	о	1.002	5.500	600	1800	Back Drop & Hydrobrake	F900
CP	/1	8.380		1	1.002	5.400	600		Petrol Interceptor	
	3735.304 2834.498	2.980	0	0	1.003 1.003	5.400 5.300	600		Inlet	F900
CPI	_2	8.529 3.299			1.000	0.000	000		Petrol Interceptor Outlet	F900
	3726.396 2842.505		→ 0	0	1.004 1.004	5.300 5.200	600 600			
	52	8.566 3.366				0.200		1800	Type 3C Penstock	F900
	3724.188 2844.469		₩ 0	0	1.005 1.005	5.200 5.000	600			
СС Е. 45)ut 3719.826	8.640 3.640							Outfall	
	2848.384 S1		,							
	3847.983	8.240 1.500	\bigvee_{o}					1200	Туре ЗА	F900
м. 522 DS	2943.301 52	8.240		0 1 2	1.000 1.000 2.000	6.740 6.740 6.740	300 300 300			
	3812.509 2903.931	1.500		0	1.000	6.740	600	1500	Type 3C Silt Pit	F900
DS	53	8.342	1	1 2	1.001 1.001	6.418 7.207	600 600		Type 3C	
	3806.536 2909.316	2.842	Ŷ	0	1.002	5.500	600		Back Drop & Hydrobrake	F900
DP	/1	8.380 2.980		1	1.002	5.400	600		Petrol Interceptor Inlet	F900
	3804.306 2911.368	2.960	V o	0	1.003 1.003	5.400	600		met	
DPI		8.529 3.229				0.000			Petrol Interceptor Outlet	F900
	3795.398 2919.375		0	0	1.004 1.004	5.300 5.200	600 600			
DS		8.566 3.366						1800	Type 3C Penstock	F900
	3793.190 2921.338		¥0	0	1.005 1.005	5.200 5.000	600 600			
DC		8.640 3.640	\bigcirc						Outfall	
	3788.828 2925.254		1							

	Date 16/03/22	By CB	Check PMM	Detaii First Issue	ls	Apı CD
P02	05/05/22	CB	РММ	Schedule U	odated.	CD
<u>Ge</u> ne	eral N	<u>Vot</u>	es			
1. All	levels in	metre	es to Ch	nart Datun		
				less noted is 2.850n	otherwise. below	
	Inance Da		•	2.00011		
<u>Tide L</u>	evels (<u>: D:</u>	+0.0	000m 0D		
HAT MH₩S	= +6.1 = +5.5 = +0.9	00m 500m	CD CD		ε	
MLWS LAT	= +0.0 = +0.0	00m	CD		2.85m	
LAT	= +0.0	oom	CD			0.000m CD
ISS	SUEI	DF	FOR	R		
ΔΡ	PRO	V	ΔΙ			
	Sout	th	Tee	S		
	Dev Cor		pli			
	Cor	po	rati	on		
G	RA		\mathbf{A}	M		
Project Tit	le:					
Sou	th Ra	nk	Qua	v (Pha	ase 1)	
			_ _ _ _	γ <u>τ</u>		
_	-					
Tees	sworks	5				
Tees Drawing T		5				
Drawing T	itle:		edul	e		
Drawing T			edul	e		
Drawing T	itle:		edul	e		
Drawing T	itle:		edul	e		
Drawing T	itte: hole S		edul	e		
Drawing T	itle: hole S	Sch	edul	e	Date:	March 2022
Drawing T Man Client/Arct	itte: hole \$ hitect: G	Sch RAHAM B	edul	e		
Drawing Ti Man Client/Arch Drawn by: Checked b	itle: hole hitect: c by: P	Sch RAHAM B MM	edul	e	Scales:	Not to Scale
Drawing Tr Man Client/Arch Drawn by: Checked b Approved	itle: hole hitect: c by: P by: c	Sch RAHAM B MM D	edul	e	Scales: Sheet Size:	Not to Scale
Drawing Ti Man Client/Arch Drawn by: Checked b	itle: hole S hitect: G by: P by: C ject No. 2	Sch RAHAM B MM	edul		Scales:	Not to Scale A1 S5
Drawing Tr Man Client/Arch Drawn by: Checked b Approved Doran Pro	itle: hole S hitect: G by: P by: C ject No. 2	Sch канам в мм 110188		_evel. Form.	Scales: Sheet Size: Status: Disc. Number	Not to Scale A1 S5
Drawing Tr Man Client/Arch Drawn by: Checked b Approved Doran Pro Project No	itle: hole S hitect: G by: C by: C by: C ject No. 2 b. Orig.	Sch RAHAM B MM D 11018B Role.	Volume/L	_evel. Form.	Scales: Sheet Size: Status: Disc. Numbe CE 400	Not to Scale A1 S5 Rev: 0004 P02
Drawing Tr Man Client/Arch Drawn by: Checked b Approved Doran Pro Project No	itle: hole hitect: by: c by: c by: c by: c c by: c c c by: c c c c c c c c c c c c c c c c c c c	Sch RAHAM B MM D 11018B Role. CIV	Volume/L SBK	Level. Form.	Scales: Sheet Size: Disc. Number CE 4000	Not to Scale A1 S5 Rev: O004 P02 House Great Victoria Street,
Drawing Tr Man Client/Arch Drawn by: Checked b Approved Doran Pro Project No	itle: hole hitect: by: c by: c by: c by: c c by: c c c by: c c c c c c c c c c c c c c c c c c c	Sch RAHAM B MM D 11018B Role. CIV	Volume/L	Level. Form.	Scales: Sheet Size: Status: Disc. Number CE 4000	Not to Scale A1 S5 Rev: OO04 P02 House Great Victoria Street, ST2 7BE
Drawing Tr Man Client/Arch Drawn by: Checked b Approved Doran Pro Project No	itle: hole hitect: by: c by: c by: c by: c c by: c c c by: c c c c c c c c c c c c c c c c c c c	Sch RAHAM B MM D 11018B Role. CIV	Volume/L SBK	Level. Form.	Scales: Sheet Size: Status: Disc. Number CE 4000 Solution Solution Status: Norwood 96-102 C Belfast B T 028 90 F 028 90	Not to Scale A1 S5 Rev: OOO4 PO2 House Great Victoria Street, T2 7BE 3333443 235501
Drawing Tr Man Client/Arch Drawn by: Checked b Approved Doran Pro Project No	itle: hole S hitect: G by: C by: C by: C by: C DCL	Sch RAHAM B MM D 11018B Role. CIV	Volume/I SBKX	Level. Form.	Scales: Sheet Size: Disc. Number CE 4000 Status: CE 500 GE 7028 90 F 028 90 E mail@	Not to Scale A1 S5 Rev: OOO4 PO2 House Great Victoria Street VIT2 7BE VI333443

Rev.	Date	By	Check	Details	Appi
P01	05/05/22	СВ	РММ	First Issue for Approval	CD
I					I
Not	<u>es</u>				
1. A	\II dimensic	ons in	mm ur	nless otherwise stated.	
2. A	\ll levels in utherwise i	metr noted	es abov	ve Chart Datum (CD) unless	
			T		
3. C	hart datun Datum (OD)	n at	leespor	t is 2.850m below Ordnance	
-					

ISSUED FOR APPROVAL

Project Title:

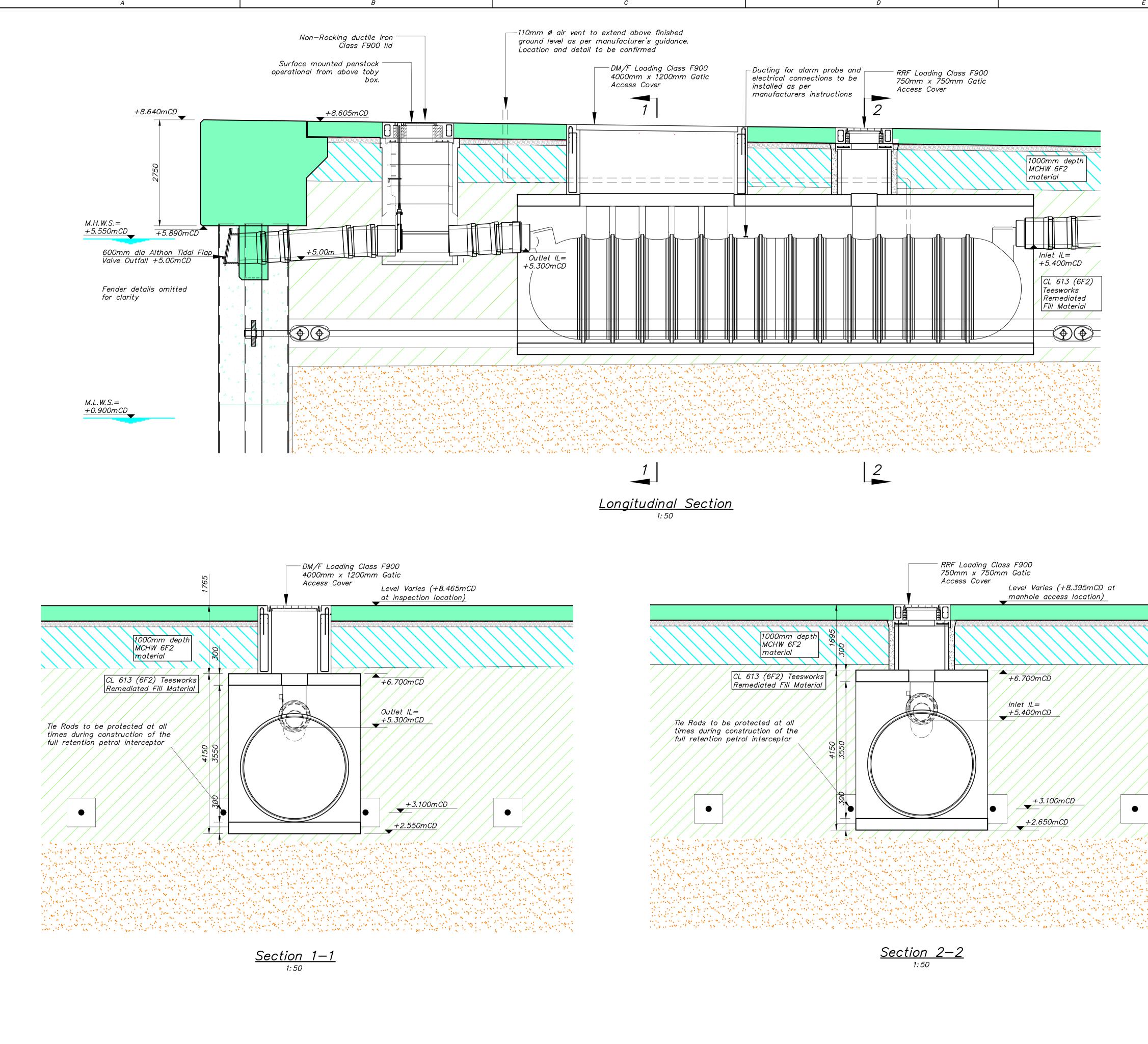

South Bank Quay (Phase 1)

Teesworks

Drawing Title:

Drainage Standard Details Sheet 3

Client/Archite	ct:	GRAHAM						
Drawn by: CB		СВ			Da	ite:	April 2	2022
Checked by:		RH			Sc	ales:	As Sh	own
Approved by:		CD			Sh	eet Size:	A1	
Doran Projec	t No.	2110118B			St	atus:	S5	
Project No.	Orig.	Role.	Volume/Level.	Form.	Disc.	Number		Revi
SBQ1	DCL	CIV	SBKXX	DR	CE	400	006	P01
			ran			Norwood 96-102 G Belfast B	ireat Victo	oria Street,
		_	NSUL ⁻	TIN	G	T 028 903 F 028 903 E mail@c	235501	ık
	D	ELIVERING	ENGINEERING	EXCELLE	ENCE	W www.c	loran.co.u	ık



Α

В

	Rev.	Date	By	Check	Details			Appr
	P01	05/05/22	CB	PMM	First Issue for .	Approval		CD
	I I <u>Note</u>	25	1	I				
			ns in	mm un	less otherwise	e stated	<i>!</i> .	
		ll levels in utherwise r		es abov	e Chart Datu	m (CD)	unless	
		hart datum atum (OD)		Teesport	is 2.850m b	elow Ord	dnance	
sections bedded								
beaaea ary stic								
	164							
		SUEI			2			
		PRC	V	AL				
		PRC Sour)V/ th	AL Tee	S			
		PRC Sour)V/ th	AL Tee	S			
		PRC)V/ th	AL Tee	S			
_		PRC Sour)V/ th	AL Tee	S			
-		PRC Sour)V/ th	AL Tee	S			
_		Sour Deve Cor	th elc	AL Tee pm ratio	s ent on			
		Sour Deve Cor	th elc	AL Tee pm ratio	S			
	AP J G			AL Tee pm ratio	s ent on			
	AP J J Project T Sou	PRO Sour Dev Cor Cor	th elc ool	AL Tee pm ratio	s ent on			
	AP J J Project T Sou Tee	PRO Sour Deve Cor Cor Cor Cor Cor Cor Cor Sworks	th elc ool	AL Tee pm ratio	s ent on			
and handfold s of safety	AP J	PRO Sour Devic Cor Cor RA	th elc ool	AL Tee pm ratio	s ent on M	e 1)		
and handfold s of safety I see DMRB D. For details I and toe	AP G Project T Sou Tee Drawing Dra	PRO Sour Devic Cor Cor RA	th elc ool	AL Tee pm ratio	s ent on	e 1)		
and handfold s of safety ' see DMRB D. For details ' and toe	AP G Project T Sou Tee Drawing Dra	PRO Sour Deve Cor Cor RA	th elc ool	AL Tee pm ratio	s ent on M	e 1)		
and handfold s of safety ' see DMRB D. For details ' and toe	AP G Project T Sou Tee Drawing Dra She Client/Ar	PRO Source Corr RA RA Title: Title: Title: Title: Title: Title: Title: Title: Title: Title: Title: Title: Title: Corr Corr Corr Corr Corr Corr Corr Cor	thelo ool nk s Sto	AL Tee pm ratio	sent on M y (Phas	e 1) ils		
and handfold s of safety ' see DMRB D. For details ' and toe	AP G Project T Sou Tee Drawing Dra She	PRO Sour Deve Cor RA Title: Ti		AL Tee pm ratio	sent on M y (Phas rd Deta	e 1)	April 2022 As Shown	
and handfold s of safety l see DMRB 0. For details l and toe	AP AP	PRO Source Deve Corr RA itle: th Ba sworks Title: inage et 4	thelcool ool nk s Stc	AL Tee pm ratio	sent on y (Phas rd Deta	e 1) ils		
and handfold s of safety l see DMRB 0. For details l and toe	AP AP	PRO Source Corrections RA RA Title: th Ba sworks Title: inage et 4	thelcool ool nk s Stc		sent on y (Phas rd Deta	e 1) ils Date: Scales: Sheet Size: Status:	As Shown A1 S5	
guardrail and handfold s of safety d see DMRB 0. For details d and toe wing number	AP AP	PRO		AL Tee pratic	sent on y (Phas rd Deta	e 1) ils Date: Scales: Sheet Size: Status:	As Shown A1 S5	
and handfold 's of safety I see DMRB 0. For details 'l and toe	AP AP	PRO Source Devices Corrections RA RA Title: th Ba sworks Title: th Ba sworks The Sta sworks The Sta s	thelo ool ool ool ool ool ool ool ool ool		sent on y (Phas rd Deta	e 1) ils Date: Scales: Sheet Size: Status: Status: Number 400 Norwood	As Shown A1 S5 r. Re 007 PC	→ → → →

Ε

Rev.	Date	By	Check	Details	Appr.
P01	03/02/22	CB	FD	First Issue	CD
P02	10/02/22	CB	FD	Rocker Pipe Added	CD
P03	24/03/22	CB	FD	Notes Updated.	CD
P04	05/05/22	CB	FD	Sections Updated.	CD

APPENDIX C: MICRODRAINAGE CALCULATIONS

SBQ1-DCL-CIV-SBKXX-CA-CE-000006

Doran Consulting Limited		Page 1
Norwood House		
96-102 Great Victoria Street		
Belfast, BT2 7BE		Micro
Date 25/04/2022 12:27	Designed by 597	Drainage
File Drainage Design 2022-04-11 8	Checked by	Diginarye
Innovyze	Network 2019.1	

STORM SEWER DESIGN by the Modified Rational Method

Design Criteria for Storm

Pipe Sizes DC PIPES Manhole Sizes DC MHs

FSR Rainfall Model - England and WalesReturn Period (years)2PIMP (%)100M5-60 (mm)18.000Add Flow / Climate Change (%)0Ratio R0.350Minimum Backdrop Height (m)0.000Maximum Rainfall (mm/hr)200Maximum Backdrop Height (m)0.000Maximum Time of Concentration (mins)30Min Design Depth for Optimisation (m)1.200Foul Sewage (1/s/ha)0.000Min Vel for Auto Design only (m/s)1.00Volumetric Runoff Coeff.0.750Min Slope for Optimisation (1:X)500

Designed with Level Soffits

Network Design Table for Storm

PN	Length (m)	Fall (m)	Slope (1:X)	I.Area (ha)	T.E. (mins)	Base Flow (l/s)	k (mm)	HYD SECT	DIA (mm)	Section Type	Auto Design
S1.000	26.488	0.001	26488.3	0.140	5.00	0.0	0.600	0	-5	Pipe/Conduit	ð
S2.000	16.376	0.001	16376.0	0.173	5.00	0.0	0.600	0	-6	Pipe/Conduit	ð
S2.001	16.376	0.001	16376.0	0.000	0.00	0.0	0.600	0	-6	Pipe/Conduit	ď
S2.002	16.376	0.001	16376.0	0.173	0.00	0.0	0.600	0	-6	Pipe/Conduit	ď
S2.003	16.376	0.001	16376.0	0.000	0.00	0.0	0.600	0	-6	Pipe/Conduit	ď
S2.004	16.376	0.001	16376.0	0.173	0.00	0.0	0.600	0	-7	Pipe/Conduit	Ť
S2.005	16.376	0.001	32752.7	0.000	0.00	0.0	0.600	0	-7	Pipe/Conduit	Ū.
S2.006	16.377	0.001	16377.0	0.173	0.00	0.0	0.600	0	-7	Pipe/Conduit	<u> </u>
S2.007	16.377	0.001	16377.0	0.000	0.00	0.0	0.600	0	-7	Pipe/Conduit	Ū
S1.001	8.143	0.137	59.4	0.000	0.00	0.0	0.600	0	600	Pipe/Conduit	6
S1.002	3.030	0.100	30.3	0.000	0.00	0.0	0.600	0	600	Pipe/Conduit	ď
S1.003	11.944	0.100	119.4	0.000	0.00	0.0	0.600	0	600	Pipe/Conduit	ď
S1.004	2.988	0.100	29.8	0.000	0.00	0.0	0.600	0	600	Pipe/Conduit	ď
S1.005	5.861	0.200	29.3	0.000	0.00	0.0	0.600	0	600	Pipe/Conduit	ď

Network Results Table

PN	Rain (mm/hr)	T.C. (mins)	US/IL (m)	Σ I.Area (ha)	Σ Base Flow (l/s)	Foul (l/s)	Add Flow (l/s)	Vel (m/s)	Cap (1/s)	Flow (l/s)	
S1.000	45.32	8.96	7.440	0.140	0.0	0.0	0.0	0.11	17.2	17.2	
S2.000 S2.001	52.36 47.25		7.290 7.289	0.173 0.173	0.0	0.0	0.0	0.17 0.17	42.2 42.2	24.6 24.6	
S2.002 S2.003	43.18 39.85		7.288 7.287	0.347 0.347	0.0	0.0 0.0	0.0 0.0	0.17 0.17	42.2 42.2	40.6 40.6	
S2.004 S2.005	37.48 34.64	12.84 14.81	7.085	0.520	0.0	0.0	0.0	0.20 0.14	82.2 57.2	52.8 52.8	
S2.006 S2.007	32.95 31.45		7.085 7.084	0.694 0.694	0.0	0.0	0.0	0.20 0.20	82.2 82.2	61.9 61.9	
S1.001 S1.002	31.40 31.39	17.60 17.61	7.083 5.500	0.834 0.834	0.0	0.0	0.0	3.16 4.44	894.2 1254.0	70.9 70.9	
s1.003	31.30 31.29	17.70	5.400	0.834	0.0	0.0	0.0	2.23	629.8 1263.5	70.9	
s1.004 s1.005	31.29		5.200	0.834	0.0	0.0	0.0		1203.3	70.9	
				©1982-	2019 Innov	vyze					

Doran Consulting Limited	Page 2	
Norwood House		
96-102 Great Victoria Street		
Belfast, BT2 7BE		Micro
Date 25/04/2022 12:27	Designed by 597	Drainage
File Drainage Design 2022-04-11 8	Checked by	Diamage
Innovyze	Network 2019.1	

Manhole Schedules for Storm

MH Name	MH CL (m)	MH Depth (m)	MH Connection	MH Diam.,L*W (mm)	PN	Pipe Out Invert Level (m)	Diameter (mm)	PN	Pipes In Invert Level (m)	Diameter (mm)	Backdrop (mm)
S10	8.240	0.800	Open Manhole	750 x 750	S1.000	7.440	-5				
S11	8.240	0.950	Junction		S2.000	7.290	-6				
S12	8.240	0.951	Junction		S2.001	7.289	-6	S2.000	7.289	-6	
S13	8.240	0.952	Open Manhole	750 x 750	S2.002	7.288	-6	S2.001	7.288	-6	
S14	8.240	0.953	Junction		S2.003	7.287	-6	S2.002	7.287	-6	
S15	8.240	1.154	Open Manhole	750 x 750	S2.004	7.086	-7	S2.003	7.286	-6	
S16	8.240	1.155	Junction		S2.005	7.085	-7	S2.004	7.085	-7	
S17	8.240	1.155	Open Manhole	750 x 750	S2.006	7.085	-7	S2.005	7.085	-7	
S18	8.240	1.157	Junction		S2.007	7.084	-7	S2.006	7.084	-7	
S19	8.240	1.158	Open Manhole	750 x 750	S1.001	7.083	600	S1.000	7.439	-5	307
								S2.007	7.083	-7	
S1	8.342	2.842	Open Manhole	1500	S1.002	5.500	600	S1.001	6.946	600	1446
S2	8.380	2.980	Open Manhole	1500	S1.003	5.400	600	S1.002	5.400	600	
S3	8.529	3.229	Open Manhole	1500	S1.004	5.300	600	S1.003	5.300	600	
S4	8.566	3.366	Open Manhole	1500	S1.005	5.200	600	S1.004	5.200	600	
S	8.640	3.640	Open Manhole	0		OUTFALL		S1.005	5.000	600	

MH Name	Manhole Easting (m)	Manhole Northing (m)		Intersection Northing (m)	Manhole Access	Layout (North)
S10	453548.489	522609.652	453548.489	522609.652	Required	
S11	453653.694	522726.862			No Entry	\mathcal{P}
S12	453642.756	522714.675			No Entry	P
S13	453631.817	522702.488	453631.817	522702.488	Required	1
S14	453620.878	522690.300			No Entry	J. T
S15	453609.940	522678.113	453609.940	522678.113	Required	1
S16	453599.001	522665.926			No Entry	j.
S17	453588.062	522653.739	453588.062	522653.739	Required	1
S18	453577.122	522641.551			No Entry	J. C.
			00.0010 To			/

©1982-2019 Innovyze

Doran Consulting Limited	Page 3	
Norwood House		
96-102 Great Victoria Street		
Belfast, BT2 7BE		Micro
Date 25/04/2022 12:27	Designed by 597	Drainage
File Drainage Design 2022-04-11 8	Checked by	Diginarye
Innovyze	Network 2019.1	·

Manhole Schedules for Storm

MH Name	Manhole Easting (m)	Manhole Northing (m)	Intersection Easting (m)	Intersection Northing (m)	Manhole Access	Layout (North)
S19	453566.183	522629.364	453566.183	522629.364	Required	$\mathbf{\mathbf{x}}$
S1	453560.110	522634.789	453560.110	522634.789	Required	\leq
S2	453557.880	522636.841	453557.880	522636.841	Required	
S3	453548.994	522644.822	453548.994	522644.822	Required	
S4	453546.767	522646.815	453546.767	522646.815	Required	
S	453542.405	522650.730			No Entry	

Doran Consulting Limited		Page 4
Norwood House		
96-102 Great Victoria Street		
Belfast, BT2 7BE		Micro
Date 25/04/2022 12:27	Designed by 597	Drainage
File Drainage Design 2022-04-11 8	Checked by	Diamage
Innovyze	Network 2019.1	

PIPELINE SCHEDULES for Storm

<u>Upstream Manhole</u>

PN	Hyd Sect		MH Name		I.Level (m)	D.Depth (m)	MH Connection	MH DIAM., L*W (mm)
S1.000	0	-5	S10	8.240	7.440	0.250	Open Manhole	750 x 750
S2.000 S2.001	0	-6 -6			7.290 7.289	0.250 0.251		
S2.002 S2.003	0	-6 -6	S13 S14	8.240 8.240	7.288	0.252	Open Manhole Junction	750 x 750
S2.004 S2.005	0	-7 -7	S15 S16	8.240	7.086	0.254	Open Manhole Junction	750 x 750
S2.006	0	-7	S17	8.240	7.085	0.255	Open Manhole	750 x 750
S2.007	0	-7		8.240	7.084	0.257		
S1.001	0	600	S19		7.083		Open Manhole	
S1.002	0	600	S1	8.342			Open Manhole	
S1.003	0	600	S2	8.380			Open Manhole	
S1.004	0	600	S3	8.529			Open Manhole	1500
S1.005	0	600	S4	8.566	5.200	2.766	Open Manhole	1500

Downstream Manhole

PN	Length (m)	Slope (1:X)	MH Name	C.Level (m)	I.Level (m)	D.Depth (m)	MH Connection	MH DIAM., L*W (mm)
S1.000	26.488	26488.3	S19	8.240	7.439	0.251	Open Manhole	750 x 750
		16376.0 16376.0	S12 S13	8.240 8.240	7.289 7.288	0.251	Junction Open Manhole	750 x 750
S2.002	16.376	16376.0	S14	8.240	7.287	0.253	Junction	750 x 750
		16376.0 16376.0	S15 S16	8.240 8.240	7.286 7.085	0.254	Open Manhole Junction	750 x 750
		32752.7 16377.0	S17 S18	8.240 8.240	7.085 7.084	0.255	Open Manhole Junction	750 x 750
		16377.0	S10 S19	8.240	7.084		Open Manhole	750 x 750
S1.001	8.143	59.4	S1	8.342	6.946		Open Manhole	1500
S1.002	3.030	30.3	S2	8.380	5.400		Open Manhole	1500
S1.003	11.944	119.4	S3	8.529	5.300	2.629	Open Manhole	1500
S1.004	2.988	29.8	S4	8.566	5.200	2.766	Open Manhole	1500
S1.005	5.861	29.3	S	8.640	5.000	3.040	Open Manhole	0

Free Flowing Outfall Details for Storm

Outfall	Outfall	c.	Level	I.	Level		Min	D,L	W
Pipe Number	Name		(m)		(m)	I.	Level	(mm)	(mm)
							(m)		
S1.005	S		8.640		5.000		0.000	0	0

Doran Consulting Limited		Page 5
Norwood House		
96-102 Great Victoria Street		
Belfast, BT2 7BE		Micro
Date 25/04/2022 12:27	Designed by 597	Drainage
File Drainage Design 2022-04-11 8	Checked by	Dialitage
Innovyze	Network 2019.1	

Simulation Criteria for Storm

Volumetric Runoff Coeff	0.750	Additional Flow - % of Total Flow 0.000
Areal Reduction Factor	1.000	MADD Factor * 10m³/ha Storage 0.000
Hot Start (mins)	0	Inlet Coeffiecient 0.800
Hot Start Level (mm)	0	Flow per Person per Day (l/per/day) 0.000
Manhole Headloss Coeff (Global)	0.500	Run Time (mins) 60
Foul Sewage per hectare (l/s)	0.000	Output Interval (mins) 1

Number of Input Hydrographs 0 Number of Offline Controls 0 Number of Time/Area Diagrams 0 Number of Online Controls 1 Number of Storage Structures 0 Number of Real Time Controls 0

Synthetic Rainfall Details

Rainfall Model	FSR	Prof	file Type	Summer
Return Period (years)	2	Cv	(Summer)	0.750
Region	England and Wales	Cv	(Winter)	0.840
M5-60 (mm)	18.000	Storm Duratio	on (mins)	30
Ratio R	0.350			

Doran Consulting L	imited						Page 6
Norwood House							
96-102 Great Victo	ria Street						
Belfast, BT2 7BE							Micco
Date 25/04/2022 12	:27		Designed	by 597			– Micro
File Drainage Desi		11 8	-	-			Drainage
	<u>911 2022-04-</u>	11 0	Network				
Innovyze			Network	2019.1			
		Online	e Control:	s for Sto	rm		
<u>Hydro-B</u>	rake® Optim	um Manho	ble: S2, 1	DS/PN: S1	.003, Vol	ume (m³):	5.7
	Unit D	eference			MD QUE ()528-2250-298	2250
		Head (m)			MD-SHE-	JJZ0-ZZJU-Z90	2.980
	Design Fl						225.0
	-	ush-Flo™				Calc	culated
		bjective			Minimis	se upstream s	-
		lication				S	Surface
		vailable ter (mm)					Yes 528
	Invert L	()					5.400
Minimum Outl	Let Pipe Diame		Site Speci	fic Design	(Contact H	vdro Internat	
	Manhole Diame		-	-			
Control Po	ints Hea	d (m) Fl	ow (l/s)	Control	Points	Head (m)	Flow (l/s)
Design Point (Ca	alculated)	2.980	225.0		Kick-Fl		188.1
E	Flush-Flo™	0.962	225.0 Me	ean Flow ov	er Head Ran	.ge –	191.2
The hydrological ca	lculations ha	ze been b	ased on the	Head/Discl	narge relat	ionship for	the Hydro-Brake
Optimum as specifie					-	-	-
utilised then these	storage rout:	ing calcu	lations wil	l be inval	idated		
Depth (m) Fl		.h. () 171					
20p011 (11) 11	Low (l/s) Dept	.n (m) F1	ow (l/s) De	epth (m) Fl	ow (l/s) De	epth (m) Flow	w (l/s)
0.100	13.0	1.200 1.400	223.2 220.0	apth (m) Fl 3.000 3.500	ow (1/s) De	epth (m) Flo 7.000 7.500	v (1/s) 341.9 353.7
0.100	13.0	1.200	223.2	3.000	225.7	7.000	341.9
0.100 0.200	13.0 48.1 98.5 155.1	1.200 1.400 1.600 1.800	223.2 220.0 215.4 208.0	3.000 3.500	225.7 243.4 259.9 275.3	7.000 7.500	341.9 353.7
0.100 0.200 0.300 0.400 0.500	13.0 48.1 98.5 155.1 204.7	1.200 1.400 1.600 1.800 2.000	223.2 220.0 215.4 208.0 194.7	3.000 3.500 4.000 4.500 5.000	225.7 243.4 259.9 275.3 289.9	7.000 7.500 8.000 8.500 9.000	341.9 353.7 365.1 376.2 386.9
0.100 0.200 0.300 0.400 0.500 0.600	13.0 48.1 98.5 155.1 204.7 216.6	1.200 1.400 1.600 1.800 2.000 2.200	223.2 220.0 215.4 208.0 194.7 194.0	3.000 3.500 4.000 4.500 5.000 5.500	225.7 243.4 259.9 275.3 289.9 303.8	7.000 7.500 8.000 8.500	341.9 353.7 365.1 376.2
0.100 0.200 0.300 0.400 0.500 0.600 0.800	13.0 48.1 98.5 155.1 204.7 216.6 223.7	1.200 1.400 1.600 1.800 2.000 2.200 2.400	223.2 220.0 215.4 208.0 194.7 194.0 202.4	3.000 3.500 4.000 4.500 5.000 5.500 6.000	225.7 243.4 259.9 275.3 289.9 303.8 317.0	7.000 7.500 8.000 8.500 9.000	341.9 353.7 365.1 376.2 386.9
0.100 0.200 0.300 0.400 0.500 0.600	13.0 48.1 98.5 155.1 204.7 216.6	1.200 1.400 1.600 1.800 2.000 2.200	223.2 220.0 215.4 208.0 194.7 194.0	3.000 3.500 4.000 4.500 5.000 5.500	225.7 243.4 259.9 275.3 289.9 303.8	7.000 7.500 8.000 8.500 9.000	341.9 353.7 365.1 376.2 386.9
0.100 0.200 0.300 0.400 0.500 0.600 0.800	13.0 48.1 98.5 155.1 204.7 216.6 223.7	1.200 1.400 1.600 1.800 2.000 2.200 2.400	223.2 220.0 215.4 208.0 194.7 194.0 202.4	3.000 3.500 4.000 4.500 5.000 5.500 6.000	225.7 243.4 259.9 275.3 289.9 303.8 317.0	7.000 7.500 8.000 8.500 9.000	341.9 353.7 365.1 376.2 386.9
0.100 0.200 0.300 0.400 0.500 0.600 0.800	13.0 48.1 98.5 155.1 204.7 216.6 223.7	1.200 1.400 1.600 1.800 2.000 2.200 2.400	223.2 220.0 215.4 208.0 194.7 194.0 202.4	3.000 3.500 4.000 4.500 5.000 5.500 6.000	225.7 243.4 259.9 275.3 289.9 303.8 317.0	7.000 7.500 8.000 8.500 9.000	341.9 353.7 365.1 376.2 386.9
0.100 0.200 0.300 0.400 0.500 0.600 0.800	13.0 48.1 98.5 155.1 204.7 216.6 223.7	1.200 1.400 1.600 1.800 2.000 2.200 2.400	223.2 220.0 215.4 208.0 194.7 194.0 202.4	3.000 3.500 4.000 4.500 5.000 5.500 6.000	225.7 243.4 259.9 275.3 289.9 303.8 317.0	7.000 7.500 8.000 8.500 9.000	341.9 353.7 365.1 376.2 386.9
0.100 0.200 0.300 0.400 0.500 0.600 0.800	13.0 48.1 98.5 155.1 204.7 216.6 223.7	1.200 1.400 1.600 1.800 2.000 2.200 2.400	223.2 220.0 215.4 208.0 194.7 194.0 202.4	3.000 3.500 4.000 4.500 5.000 5.500 6.000	225.7 243.4 259.9 275.3 289.9 303.8 317.0	7.000 7.500 8.000 8.500 9.000	341.9 353.7 365.1 376.2 386.9
0.100 0.200 0.300 0.400 0.500 0.600 0.800	13.0 48.1 98.5 155.1 204.7 216.6 223.7	1.200 1.400 1.600 1.800 2.000 2.200 2.400	223.2 220.0 215.4 208.0 194.7 194.0 202.4	3.000 3.500 4.000 4.500 5.000 5.500 6.000	225.7 243.4 259.9 275.3 289.9 303.8 317.0	7.000 7.500 8.000 8.500 9.000	341.9 353.7 365.1 376.2 386.9
0.100 0.200 0.300 0.400 0.500 0.600 0.800	13.0 48.1 98.5 155.1 204.7 216.6 223.7	1.200 1.400 1.600 1.800 2.000 2.200 2.400	223.2 220.0 215.4 208.0 194.7 194.0 202.4	3.000 3.500 4.000 4.500 5.000 5.500 6.000	225.7 243.4 259.9 275.3 289.9 303.8 317.0	7.000 7.500 8.000 8.500 9.000	341.9 353.7 365.1 376.2 386.9

T	Limite									Page 7
Jorwood House									Ţ	
96-102 Great Victo	oria S	treet								
Belfast, BT2 7BE										Micro
Date 25/04/2022 12	2:27			Design	ed by 5	97				Drainag
File Drainage Des:	ign 20	22-04-	-11 8.	Checke	d by					Drainacy
Innovyze				Networ	k 2019.	1				
Manhole F Foul Se Number of Input Number of Onl	Areal H Hot S Headloss ewage pe Line Cor nfall M Re	Reducti Hot Sta Start I s Coeff er hect graphs htrols odel gion En	on Fact art (min evel (m : (Globa care (l/ 0 Num 1 Numbe <u>Sy</u> ngland a	1) 0.500 Fl s) 0.000 ber of Offl er of Storag	<u>Addition</u> MADI Low per F ine Cont ge Struct <u>nfall De</u> F-60 (mm Ratio 1	ia hal Flow Person p crols 0 cures 0 <u>tails</u>) 18.00 R 0.35	7 - % of T 10m³/h Inlet Coe ber Day (1 Number of Number of 0 Cv (Summ 0 Cv (Wint	otal F a Stor ffieci /per/d Time/ Real ner) 0 ter) 0	low 0.0 age 0.0 ent 0.8 ay) 0.0 Area D: Time Co	000 800 000 iagrams 0
				nalysis Time DTS St	tatus	ON				
Return	uration	s) (yea	ins) 15 ars)	, 30, 60, 1 1440, 216				600, 7: D, 864 2,		, 0 0
Return	Period(limate	(s) (m. s) (yea Change Storm	ins) 15 ars) (%)		0, 2880, Flooded	4320,	60, 480, 6 5760, 7200 Overflow	600, 7: 2, 864 2, Pipe Flow	20, 960 0, 1008 30, 10	, 0 0
Return C PN	Period(limate US/MH Name	s) (yea Change Storm Rank	ins) 15 ars) (%) Water Level (m)	1440, 216 Surcharged Depth (m)	0, 2880, Flooded Volume (m ³)	4320, Flow / Cap.	60, 480, 6 5760, 7200 Overflow	600, 7: 0, 864 2, Pipe Flow (l/s)	20, 960 0, 1008 30, 10 0, 0, 4 Status	, 0 0
Return C PN S1.000	Period(limate US/MH Name S10	s) (yea Change Storm Rank 16	<pre>ins) 15 ars) (%) Water Level (m) 7.648</pre>	1440, 216 Surcharged Depth (m) -0.342	0, 2880, Flooded Volume (m ³) 0.000	4320, Flow / Cap. 0.37	60, 480, 6 5760, 7200 Overflow	600, 73 2, 864 2, Pipe Flow (l/s) 21.6	20, 960 0, 1008 30, 10 0, 0, 4 Status OK	, 0 0
Return C PN S1.000 S2.000	US/MH Name S10 S11	s) (yea Change Storm Rank 16 18	<pre>ins) 15 ars) (%) Water Level (m) 7.648 7.613</pre>	1440, 216 Surcharged Depth (m) -0.342 -0.377	0, 2880, Flooded Volume (m ³) 0.000 0.000	4320, Flow / Cap. 0.37 0.21	60, 480, 6 5760, 7200 Overflow	600, 7: 2, 864 2, Pipe Flow (1/s) 21.6 25.7	20, 960 0, 1008 30, 10 0, 0, 4 Status OK OK	, 0 0
Return C PN S1.000 S2.000 S2.001	US/MH Name S10 S11 S12	s) (yea Change Storm Rank 16 18 18	<pre>ins) 15 ars) (%) Water Level (m) 7.648 7.613 7.605</pre>	1440, 216 Surcharged Depth (m) -0.342 -0.377 -0.384	0, 2880, Flooded Volume (m ³) 0.000 0.000 0.000	4320, Flow / Cap. 0.37 0.21 0.19	60, 480, 6 5760, 7200 Overflow	600, 7: 0, 864 2, Pipe Flow (1/s) 21.6 25.7 24.3	20, 960 0, 1008 30, 10 0, 0, 4 Status OK OK OK	, 0 0
Return C PN S1.000 S2.000 S2.001 S2.002	US/MH Name S10 S11 S12 S13	s) (yea Change Storm Rank 16 18	<pre>ins) 15 ars) (%) Water Level (m) 7.648 7.613 7.605 7.597</pre>	1440, 216 Surcharged Depth (m) -0.342 -0.377 -0.384 -0.391	0, 2880, Flooded Volume (m ³) 0.000 0.000	4320, Flow / Cap. 0.37 0.21 0.19 0.49	60, 480, 6 5760, 7200 Overflow	600, 7: 0, 864 2, Pipe Flow (l/s) 21.6 25.7 24.3 45.1	20, 960 0, 1008 30, 10 0, 0, 4 Status OK OK OK OK	, 0 0
Return C PN S1.000 S2.000 S2.001	US/MH Name S10 S11 S12 S13 S14	(s) (m. s) (yea Change Storm Rank 16 18 18 18	<pre>ins) 15 ars) (%) Water Level (m) 7.648 7.613 7.605</pre>	1440, 216 Surcharged Depth (m) -0.342 -0.377 -0.384	0, 2880, Flooded Volume (m ³) 0.000 0.000 0.000 0.000	4320, Flow / Cap. 0.37 0.21 0.19	60, 480, 6 5760, 7200 Overflow	600, 7: 0, 864 2, Pipe Flow (1/s) 21.6 25.7 24.3	20, 960 0, 1008 30, 10 0, 0, 4 Status OK OK OK	, 0 0
Return C PN S1.000 S2.000 S2.001 S2.002 S2.003	US/MH Name S10 S11 S12 S13 S14 S15	(s) (m. s) (yea Change Storm Rank 16 18 18 18 18 18	<pre>ins) 15 ars) (%) Water Level (m) 7.648 7.613 7.605 7.597 7.546</pre>	1440, 216 Surcharged Depth (m) -0.342 -0.377 -0.384 -0.391 -0.441	0, 2880, Flooded Volume (m ³) 0.000 0.000 0.000 0.000 0.000	4320, Flow / Cap . 0.37 0.21 0.19 0.49 0.36	60, 480, 6 5760, 7200 Overflow	600, 7: 0, 864 2, Pipe Flow (1/s) 21.6 25.7 24.3 45.1 44.6	20, 960 0, 1008 30, 10 0, 0, 4 Status OK OK OK OK OK	, 0 0
Return C PN S1.000 S2.000 S2.001 S2.002 S2.003 S2.004	US/MH Name S10 S11 S12 S13 S14 S15 S16	(s) (m. s) (yea Change Storm Rank 16 18 18 18 19 19	<pre>ins) 15 ars) (%) Water Level (m) 7.648 7.613 7.605 7.597 7.546 7.492</pre>	1440, 216 Surcharged Depth (m) -0.342 -0.377 -0.384 -0.391 -0.441 -0.494	0, 2880, Flooded Volume (m ³) 0.000 0.000 0.000 0.000 0.000 0.000	4320, Flow / Cap. 0.37 0.21 0.19 0.49 0.36 0.38	60, 480, 6 5760, 7200 Overflow	<pre>600, 7: 0, 864 2, Pipe Flow (l/s) 21.6 25.7 24.3 45.1 44.6 63.5</pre>	20, 960 0, 1008 30, 10 0, 0, 4 Status OK OK OK OK OK	, 0 0
Return C PN S1.000 S2.000 S2.001 S2.002 S2.003 S2.004 S2.005 S2.006 S2.007	US/MH Name S10 S11 S12 S13 S14 S15 S16 S17 S18	(s) (m. s) (yea Change Storm Rank 16 18 18 18 19 19 19	<pre>water Level (%) 7.648 7.613 7.605 7.597 7.546 7.492 7.469 7.455 7.403</pre>	1440, 216 Surcharged Depth (m) -0.342 -0.377 -0.384 -0.391 -0.441 -0.494 -0.516 -0.529 -0.580	0, 2880, Flooded Volume (m ³) 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	4320, Flow / Cap. 0.37 0.21 0.19 0.49 0.36 0.38 0.26 0.48 0.33	60, 480, 6 5760, 7200 Overflow	<pre>600, 7: 0, 864 2, Flow (l/s) 21.6 25.7 24.3 45.1 44.6 63.5 62.9 80.3 79.8</pre>	20, 960 0, 1008 30, 10 0, 0, 4 Status OK OK OK OK OK OK OK	, 0 0
Return C PN S1.000 S2.000 S2.001 S2.002 S2.003 S2.004 S2.005 S2.006 S2.007 S1.001	US/MH Name S10 S11 S12 S13 S14 S15 S16 S17 S18 S19	(s) (m. s) (yea Change Storm Rank 16 18 18 18 19 19 19 19 19 20	<pre>water Level (%) 7.648 7.613 7.605 7.597 7.546 7.492 7.469 7.455 7.403 7.285</pre>	1440, 216 Surcharged Depth (m) -0.342 -0.377 -0.384 -0.391 -0.441 -0.494 -0.516 -0.529 -0.580 -0.398	0, 2880, Flooded Volume (m ³) 0.0000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.0000000 0.000000 0.00000000	4320, Flow / Cap. 0.37 0.21 0.19 0.49 0.36 0.38 0.26 0.48 0.33 0.25	60, 480, 6 5760, 7200 Overflow	<pre>600, 7: 0, 864 2, Flow (l/s) 21.6 25.7 24.3 45.1 44.6 63.5 62.9 80.3 79.8 94.1</pre>	20, 960 0, 1008 30, 10 0, 0, 4 Status OK OK OK OK OK OK OK OK	, 0 0
Return C PN S1.000 S2.000 S2.001 S2.002 S2.003 S2.004 S2.005 S2.006 S2.007 S1.001 S1.002	US/MH Name S10 S11 S12 S13 S14 S15 S16 S17 S18 S19 S1	(s) (m. s) (yea Change Storm Rank 16 18 18 18 19 19 19 19 19 20 19	<pre>water Level (%) 7.648 7.613 7.605 7.597 7.546 7.492 7.469 7.455 7.403 7.285 5.810</pre>	1440, 216 Surcharged Depth (m) -0.342 -0.377 -0.384 -0.391 -0.441 -0.494 -0.516 -0.529 -0.580 -0.398 -0.290	0, 2880, Flooded Volume (m ³) 0.0000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.000000 0.00000000	4320, Flow / Cap. 0.37 0.21 0.19 0.49 0.36 0.38 0.26 0.48 0.33 0.25 0.27	60, 480, 6 5760, 7200 Overflow	<pre>600, 7: 0, 864 2, Flow (l/s) 21.6 25.7 24.3 45.1 44.6 63.5 62.9 80.3 79.8 94.1 93.3</pre>	20, 960 0, 1008 30, 10 0, 0, 4 Status OK OK OK OK OK OK OK OK	, 0 0
Return C PN S1.000 S2.000 S2.001 S2.002 S2.003 S2.004 S2.005 S2.006 S2.007 S1.001 S1.002 S1.003	US/MH Name S10 S11 S12 S13 S14 S15 S16 S17 S18 S19 S1 S2	(s) (m. s) (yea Change Storm Rank 16 18 18 19 19 19 19 19 20 19 19	<pre>water Level (%) 7.648 7.613 7.605 7.597 7.546 7.492 7.469 7.455 7.403 7.285 5.810 5.805</pre>	1440, 216 Surcharged Depth (m) -0.342 -0.377 -0.384 -0.391 -0.441 -0.494 -0.516 -0.529 -0.580 -0.398 -0.290 -0.195	0, 2880, Flooded Volume (m ³) 0.0000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.000000 0.00000 0.00000 0.00000 0.00000000	4320, Flow / Cap. 0.37 0.21 0.19 0.49 0.36 0.38 0.26 0.48 0.33 0.25 0.27 0.27	60, 480, 6 5760, 7200 Overflow	<pre>600, 7: 0, 864 2, Flow (1/s) 21.6 25.7 24.3 45.1 44.6 63.5 62.9 80.3 79.8 94.1 93.3 93.7</pre>	20, 960 0, 1008 30, 10 0, 0, 4 Status OK OK OK OK OK OK OK OK OK	, 0 0
Return C PN S1.000 S2.000 S2.001 S2.002 S2.003 S2.004 S2.005 S2.006 S2.007 S1.001 S1.002 S1.003 S1.004	US/MH Name S10 S11 S12 S13 S14 S15 S16 S17 S18 S19 S1 S2 S3	(s) (m. s) (yea Change Storm Rank 16 18 18 19 19 19 19 19 20 19 19 20 19	<pre>water Level (%) (%)</pre>	1440, 216 Surcharged Depth (m) -0.342 -0.377 -0.384 -0.391 -0.441 -0.494 -0.516 -0.529 -0.580 -0.398 -0.290 -0.195 -0.388	0, 2880, Flooded Volume (m ³) 0.0000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000000	4320, Flow / Cap. 0.37 0.21 0.19 0.49 0.36 0.38 0.26 0.48 0.33 0.25 0.27 0.27 0.27	60, 480, 6 5760, 7200 Overflow	<pre>600, 7: 0, 864 2, Flow (1/s) 21.6 25.7 24.3 45.1 44.6 63.5 62.9 80.3 79.8 94.1 93.3 93.7 93.9</pre>	20, 960 0, 1008 30, 10 0, 0, 4 Status OK OK OK OK OK OK OK OK OK	, 0 0 0
Return C PN S1.000 S2.000 S2.001 S2.002 S2.003 S2.004 S2.005 S2.006 S2.007 S1.001 S1.002 S1.003	US/MH Name S10 S11 S12 S13 S14 S15 S16 S17 S18 S19 S1 S2 S3	(s) (m. s) (yea Change Storm Rank 16 18 18 19 19 19 19 19 20 19 19	<pre>water Level (%) 7.648 7.613 7.605 7.597 7.546 7.492 7.469 7.455 7.403 7.285 5.810 5.805</pre>	1440, 216 Surcharged Depth (m) -0.342 -0.377 -0.384 -0.391 -0.441 -0.494 -0.516 -0.529 -0.580 -0.398 -0.290 -0.195	0, 2880, Flooded Volume (m ³) 0.0000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.000000 0.00000 0.00000 0.00000 0.00000000	4320, Flow / Cap. 0.37 0.21 0.19 0.49 0.36 0.38 0.26 0.48 0.33 0.25 0.27 0.27	60, 480, 6 5760, 7200 Overflow	<pre>600, 7: 0, 864 2, Flow (1/s) 21.6 25.7 24.3 45.1 44.6 63.5 62.9 80.3 79.8 94.1 93.3 93.7</pre>	20, 960 0, 1008 30, 10 0, 0, 4 Status OK OK OK OK OK OK OK OK OK	, 0 0 0

	Page 8
	Micro
Designed by 597	Drainage
Checked by	Diamage
Network 2019.1	1
	Checked by

Rainfall Hyetograph for 15 minute 2 year Winter I+0% (Storm)

Time (mins)	Rain (mm/hr)	_	Rain (mm/hr)				Rain (mm/hr)		Rain (mm/hr)
1	8.189	4	19.703	7	73.442	10	51.601	13	15.565
2	14.944	5	31.893	8	85.309	11	31.893	14	14.944
3	15.565	6	51.601	9	73.442	12	19.703	15	8.189

		ted							Pa	age 9
orwood House									[
6-102 Great Vic	toria	Stree	et							
elfast, BT2 7BE										Micco
ate 25/04/2022	12:27			Desi	gned by	597				Micro
ile Drainage De	sign 2	2022-0)4-11		ked by					Draina
nnovyze	<u> </u>				ork 201	9.1			•	
<u>S</u>	ummary	y Wiza	ard of	15 minute	30 yea	ır Wint	er I+0%	for	Storm	
	Area	l Reduc	tion F	<u>Simulat</u>	ion Crite		o₩ = ⁸ o	f Total	. Flow 0.00	0
	ni cu.		Start (r						orage 0.00	
			: Level						cient 0.80	
				obal) 0.500 (l/s) 0.000	Flow per	r Person	per Day	(l/per	/day) 0.00	0
Number of Inp Number of O	-									-
				Synthetic R	ainfall	<u>Details</u>				
Ra	ainfall			FSR	M5-60 (1	mm) 18.0				
		Region	Englan	d and Wales	Rati	or 0.3	50 Cv (V	linter)	0.840	
	More	ain fo		Diele Wenni	n a. (mm)	200 0		atura 01	NT	
	Mar	gin io	r Flood	Risk Warni Analysis T	-					
					Status		CICIU DO			
	Durati		ile(s) (mins)	15, 30, 60,	120, 18	0, 240,			and Winter 720, 960,	
Return	n Peric	.on(s)	(mins) years)				360, 480), 600, 200, 8		
Retur	n Peric	.on(s) od(s) ((mins) years) ge (%)		2160, 288		360, 480), 600, 200, 8	720, 960, 640, 10080 2, 30, 100	
	n Peric Climat US/MH	on(s) od(s) (ce Chan Storm	(mins) years) ge (%) Water Level	1440, 2 Surcharged Depth	Flooded Volume	0, 4320, Flow /	360, 480 5760, 5 Overflow	0, 600, 2200, 8 Pipe Flow	720, 960, 640, 10080 2, 30, 100 0, 0, 40	
Return PN	n Peric Climat	on(s) od(s) (ce Chan Storm	(mins) years) ge (%) Water	1440, 2 Surcharged	160, 288 Flooded	0, 4320,	360, 480 5760, 7	0, 600, 2200, 8 Pipe Flow	720, 960, 640, 10080 2, 30, 100	
PN S1.000	n Peric Climat US/MH Name S10	on(s) od(s) (ce Chan Storm	<pre>(mins) years) ge (%) Water Level (m) 7.745</pre>	1440, 2 Surcharged Depth (m) -0.245	Flooded Volume	0, 4320, Flow /	360, 480 5760, 5 Overflow	<pre>Pipe Flow (1/s) 40.7</pre>	720, 960, 640, 10080 2, 30, 100 0, 0, 40 Status OK	ζ
PN S1.000 S2.000	n Peric Climat US/MH Name S10 S11	con(s) od(s) (ce Chan Storm Rank 6 7	(mins) years) ge (%) Water Level (m) 7.745 7.758	1440, 2 Surcharged Depth (m) -0.245 -0.232	<pre>Flooded Volume (m³) 0.000 0.000</pre>	<pre>0, 4320, Flow / Cap. 0.69 0.39</pre>	360, 480 5760, 5 Overflow	<pre>Pipe Flow (1/s) 40.7 49.1</pre>	720, 960, 640, 10080 2, 30, 100 0, 0, 40 Status OK OK	ζ
PN S1.000 S2.000 S2.001	n Peric Climat US/MH Name S10 S11 S12	con(s) od(s) (ce Chan Storm Rank 6 7 7	(mins) years) ge (%) Water Level (m) 7.745 7.758 7.751	1440, 2 Surcharged Depth (m) -0.245 -0.232 -0.238	<pre>Flooded Volume (m³) 0.000 0.000 0.000</pre>	<pre>0, 4320, Flow / Cap. 0.69 0.39 0.38</pre>	360, 480 5760, 5 Overflow	<pre>Pipe Flow (1/s) 40.7 49.1 48.0</pre>	720, 960, 640, 10080 2, 30, 100 0, 0, 40 Status OK OK OK	ζ.
PN \$1.000 \$2.000 \$2.001 \$2.002	n Peric Climat US/MH Name S10 S11 S12 S13	con(s) od(s) (ee Chan Storm Rank 6 7 7 7	<pre>(mins) years) ge (%) Water Level (m) 7.745 7.758 7.751 7.743</pre>	1440, 2 Surcharged Depth (m) -0.245 -0.232 -0.238 -0.245	<pre>Flooded Volume (m³) 0.000 0.000 0.000 0.000</pre>	<pre>0, 4320, Flow / Cap. 0.69 0.39 0.38 1.02</pre>	360, 480 5760, 5 Overflow	<pre>Pipe Flow (1/s) 40.7 49.1 48.0 94.4</pre>	720, 960, 640, 10080 2, 30, 100 0, 0, 40 Status OK OK OK OK	ς ς ς
PN \$1.000 \$2.000 \$2.001 \$2.002 \$2.003	N Peric Climat US/MH Name S10 S11 S12 S13 S14	con(s) od(s) (.e Chan Storm Rank 6 7 7 7 7 7 7	(mins) years) ge (%) Water Level (m) 7.745 7.758 7.751 7.743 7.698	1440, 2 Surcharged Depth (m) -0.245 -0.232 -0.238 -0.245 -0.289	<pre>Flooded Volume (m³) 0.000 0.000 0.000 0.000 0.000</pre>	<pre>0, 4320, Flow / Cap. 0.69 0.39 0.38 1.02 0.74</pre>	360, 480 5760, 5 Overflow	Pipe Flow (1/s) 40.7 49.1 48.0 94.4 91.9	720, 960, 640, 10080 2, 30, 100 0, 0, 40 Status OK OK OK OK OK OK	ς ς ς
PN \$1.000 \$2.000 \$2.001 \$2.002 \$2.003 \$2.004	N Peric Climat US/MH Name S10 S11 S12 S13 S14 S15	con(s) od(s) (.e Chan Storm Rank 6 7 7 7 7 7 7 7 7 7	<pre>(mins) years) ge (%) Water Level (m) 7.745 7.758 7.751 7.743 7.698 7.661</pre>	1440, 2 Surcharged Depth (m) -0.245 -0.232 -0.238 -0.245 -0.289 -0.325	Flooded Volume (m ³) 0.000 0.000 0.000 0.000 0.000 0.000	<pre>0, 4320, Flow / Cap. 0.69 0.39 0.38 1.02 0.74 0.81</pre>	360, 480 5760, 5 Overflow	Pipe Flow (1/s) 40.7 49.1 48.0 94.4 91.9 134.4	720, 960, 640, 10080 2, 30, 100 0, 0, 40 Status OK OK OK OK OK OK	ς ς ς ς
PN \$1.000 \$2.000 \$2.001 \$2.002 \$2.003 \$2.004 \$2.005	N Peric Climat US/MH Name S10 S11 S12 S13 S14 S15 S16	con(s) od(s) (.e Chan Storm Rank 6 7 7 7 7 7 7	<pre>(mins) years) ge (%) Water Level (m) 7.745 7.758 7.751 7.743 7.698 7.661 7.636</pre>	1440, 2 Surcharged Depth (m) -0.245 -0.232 -0.238 -0.245 -0.289 -0.325 -0.349	Flooded Volume (m ³) 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	<pre>0, 4320, Flow / Cap. 0.69 0.39 0.38 1.02 0.74 0.81 0.56</pre>	360, 480 5760, 5 Overflow	<pre>Pipe Flow (1/s) 40.7 49.1 48.0 94.4 91.9 134.4 134.3</pre>	720, 960, 640, 10080 2, 30, 100 0, 0, 40 Status OK OK OK OK OK OK OK	
PN \$1.000 \$2.000 \$2.001 \$2.002 \$2.003 \$2.004 \$2.005 \$2.006	N Peric Climat US/MH Name S10 S11 S12 S13 S14 S15 S16 S17	con(s) od(s) (.e Chan Storm Rank 6 7 7 7 7 7 7 7 7 7	(mins) years) ge (%) Water Level (m) 7.745 7.758 7.751 7.743 7.698 7.661 7.636 7.623	1440, 2 Surcharged Depth (m) -0.245 -0.232 -0.238 -0.245 -0.289 -0.325 -0.349 -0.362	Flooded Volume (m ³) 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	<pre>0, 4320, Flow / Cap. 0.69 0.39 0.38 1.02 0.74 0.81 0.56 1.03</pre>	360, 480 5760, 5 Overflow	Pipe Flow (1/s) 40.7 49.1 48.0 94.4 91.9 134.4 134.3 172.0	720, 960, 640, 10080 2, 30, 100 0, 0, 40 Status OK OK OK OK OK OK OK	
PN \$1.000 \$2.000 \$2.001 \$2.002 \$2.003 \$2.004 \$2.005 \$2.006 \$2.007	n Peric Climat US/MH Name S10 S11 S12 S13 S14 S15 S16 S17 S18	con (s) d(s) (e Chan Storm Rank 6 7 7 7 7 7 7 7 7 7 7 7	(mins) years) ge (%) Water Level (m) 7.745 7.758 7.751 7.743 7.698 7.661 7.636 7.623 7.532	1440, 2 Surcharged Depth (m) -0.245 -0.232 -0.238 -0.245 -0.289 -0.325 -0.349 -0.362 -0.451	Flooded Volume (m ³) 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	<pre>0, 4320, Flow / Cap. 0.69 0.39 0.38 1.02 0.74 0.81 0.56 1.03 0.70</pre>	360, 480 5760, 5 Overflow	Pipe Flow (1/s) 40.7 49.1 48.0 94.4 91.9 134.4 134.3 172.0 169.6	720, 960, 640, 10080 2, 30, 100 0, 0, 40 Status OK OK OK OK OK OK OK OK OK	
PN \$1.000 \$2.000 \$2.001 \$2.002 \$2.003 \$2.004 \$2.005 \$2.006 \$2.007 \$1.001	n Peric Climat US/MH Name S10 S11 S12 S13 S14 S15 S16 S17 S18 S19	con(s) od(s) (ce Chan Storm Rank 6 7 7 7 7 7 7 7 7 7 7 7 7 7	<pre>(mins) years) ge (%) Water Level (m) 7.745 7.758 7.751 7.743 7.698 7.661 7.636 7.623 7.532 7.400</pre>	1440, 2 Surcharged Depth (m) -0.245 -0.232 -0.238 -0.245 -0.289 -0.325 -0.349 -0.362 -0.451 -0.282	Flooded Volume (m ³) 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	<pre>0, 4320, Flow / Cap. 0.69 0.39 0.38 1.02 0.74 0.81 0.56 1.03 0.70 0.55</pre>	360, 480 5760, 5 Overflow	Pipe Flow (1/s) 40.7 49.1 48.0 94.4 91.9 134.4 134.3 172.0 169.6 205.4	720, 960, 640, 10080 2, 30, 100 0, 0, 40 Status OK OK OK OK OK OK OK OK OK OK OK	
PN \$1.000 \$2.000 \$2.001 \$2.002 \$2.003 \$2.004 \$2.005 \$2.006 \$2.007 \$1.001 \$1.002	n Peric Climat US/MH Name S10 S11 S12 S13 S14 S15 S16 S17 S18 S19	con (s) d(s) (e Chan Storm Rank 6 7 7 7 7 7 7 7 7 7 7 7	(mins) years) ge (%) Water Level (m) 7.745 7.758 7.751 7.743 7.698 7.661 7.636 7.623 7.532	1440, 2 Surcharged Depth (m) -0.245 -0.232 -0.238 -0.245 -0.289 -0.325 -0.349 -0.362 -0.451 -0.282 0.166	Flooded Volume (m ³) 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	<pre>0, 4320, Flow / Cap. 0.69 0.39 0.38 1.02 0.74 0.81 0.56 1.03 0.70</pre>	360, 480 5760, 5 Overflow	Pipe Flow (1/s) 40.7 49.1 48.0 94.4 91.9 134.4 134.3 172.0 169.6 205.4	720, 960, 640, 10080 2, 30, 100 0, 0, 40 Status OK OK OK OK OK OK OK OK OK	
PN \$1.000 \$2.000 \$2.001 \$2.002 \$2.003 \$2.004 \$2.005 \$2.006 \$2.007 \$1.001 \$1.002 \$1.003	n Peric Climat US/MH Name S10 S11 S12 S13 S14 S15 S16 S17 S18 S19 S1 S2	con (s) d(s) (e Chan Storm Rank 6 7 7 7 7 7 7 7 7 7 7 7 7 7	<pre>(mins) years) ge (%) Water Level (m) 7.745 7.758 7.751 7.743 7.698 7.661 7.636 7.623 7.532 7.400 6.266 6.168</pre>	1440, 2 Surcharged Depth (m) -0.245 -0.232 -0.238 -0.245 -0.289 -0.325 -0.349 -0.362 -0.451 -0.282 0.166 0.168	Flooded Volume (m ³) 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	<pre>0, 4320, Flow / Cap. 0.69 0.39 0.38 1.02 0.74 0.81 0.56 1.03 0.70 0.55 0.59 0.60</pre>	360, 480 5760, 5 Overflow	Pipe Flow (l/s) 40.7 49.1 48.0 94.4 91.9 134.4 134.3 172.0 169.6 205.4 206.1 206.6	720, 960, 640, 10080 2, 30, 100 0, 0, 40 Status OK OK OK OK OK OK OK OK OK OK OK OK OK	
PN \$1.000 \$2.000 \$2.001 \$2.002 \$2.003 \$2.004 \$2.005 \$2.006 \$2.007 \$1.001 \$1.002 \$1.003 \$1.004	n Peric Climat US/MH Name S10 S11 S12 S13 S14 S15 S16 S17 S18 S19 S1 S2 S3	con (s) d(s) (e Chan Storm Rank 6 7 7 7 7 7 7 7 7 7 7 7 7 7	<pre>(mins) years) ge (%) Water Level (m) 7.745 7.758 7.751 7.743 7.698 7.661 7.636 7.623 7.532 7.400 6.266 6.168 5.633</pre>	1440, 2 Surcharged Depth (m) -0.245 -0.232 -0.238 -0.245 -0.289 -0.325 -0.349 -0.362 -0.451 -0.282 0.166 0.168 -0.267	<pre>Flooded Volume (m³) 0.000</pre>	<pre>0, 4320, Flow / Cap. 0.69 0.39 0.38 1.02 0.74 0.81 0.56 1.03 0.70 0.55 0.59 0.60 0.59</pre>	360, 480 5760, 5 Overflow	Pipe Flow (l/s) 40.7 49.1 48.0 94.4 91.9 134.4 134.3 172.0 169.6 205.4 206.1 206.6 205.6	720, 960, 640, 10080 2, 30, 100 0, 0, 40 Status OK OK OK OK OK OK OK OK OK OK OK OK OK	
PN \$1.000 \$2.000 \$2.001 \$2.002 \$2.003 \$2.004 \$2.005 \$2.006 \$2.007 \$1.001 \$1.002 \$1.003	n Peric Climat US/MH Name S10 S11 S12 S13 S14 S15 S16 S17 S18 S19 S1 S2	con (s) d(s) (e Chan Storm Rank 6 7 7 7 7 7 7 7 7 7 7 7 7 7	<pre>(mins) years) ge (%) Water Level (m) 7.745 7.758 7.751 7.743 7.698 7.661 7.636 7.623 7.532 7.400 6.266 6.168</pre>	1440, 2 Surcharged Depth (m) -0.245 -0.232 -0.238 -0.245 -0.289 -0.325 -0.349 -0.362 -0.451 -0.282 0.166 0.168	Flooded Volume (m ³) 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	<pre>0, 4320, Flow / Cap. 0.69 0.39 0.38 1.02 0.74 0.81 0.56 1.03 0.70 0.55 0.59 0.60</pre>	360, 480 5760, 5 Overflow	Pipe Flow (l/s) 40.7 49.1 48.0 94.4 91.9 134.4 134.3 172.0 169.6 205.4 206.1 206.6	720, 960, 640, 10080 2, 30, 100 0, 0, 40 Status OK OK OK OK OK OK OK OK OK OK OK OK OK	
PN \$1.000 \$2.000 \$2.001 \$2.002 \$2.003 \$2.004 \$2.005 \$2.006 \$2.007 \$1.001 \$1.002 \$1.003 \$1.004	n Peric Climat US/MH Name S10 S11 S12 S13 S14 S15 S16 S17 S18 S19 S1 S2 S3	con (s) d(s) (e Chan Storm Rank 6 7 7 7 7 7 7 7 7 7 7 7 7 7	<pre>(mins) years) ge (%) Water Level (m) 7.745 7.758 7.751 7.743 7.698 7.661 7.636 7.623 7.532 7.400 6.266 6.168 5.633</pre>	1440, 2 Surcharged Depth (m) -0.245 -0.232 -0.238 -0.245 -0.289 -0.325 -0.349 -0.362 -0.451 -0.282 0.166 0.168 -0.267	<pre>Flooded Volume (m³) 0.000</pre>	<pre>0, 4320, Flow / Cap. 0.69 0.39 0.38 1.02 0.74 0.81 0.56 1.03 0.70 0.55 0.59 0.60 0.59</pre>	360, 480 5760, 5 Overflow	Pipe Flow (l/s) 40.7 49.1 48.0 94.4 91.9 134.4 134.3 172.0 169.6 205.4 206.1 206.6 205.6	720, 960, 640, 10080 2, 30, 100 0, 0, 40 Status OK OK OK OK OK OK OK OK OK OK OK OK OK	
PN \$1.000 \$2.000 \$2.001 \$2.002 \$2.003 \$2.004 \$2.005 \$2.006 \$2.007 \$1.001 \$1.002 \$1.003 \$1.004	n Peric Climat US/MH Name S10 S11 S12 S13 S14 S15 S16 S17 S18 S19 S1 S2 S3	con (s) d(s) (e Chan Storm Rank 6 7 7 7 7 7 7 7 7 7 7 7 7 7	<pre>(mins) years) ge (%) Water Level (m) 7.745 7.758 7.751 7.743 7.698 7.661 7.636 7.623 7.532 7.400 6.266 6.168 5.633</pre>	1440, 2 Surcharged Depth (m) -0.245 -0.232 -0.238 -0.245 -0.289 -0.325 -0.349 -0.362 -0.451 -0.282 0.166 0.168 -0.267	<pre>Flooded Volume (m³) 0.000</pre>	<pre>0, 4320, Flow / Cap. 0.69 0.39 0.38 1.02 0.74 0.81 0.56 1.03 0.70 0.55 0.59 0.60 0.59</pre>	360, 480 5760, 5 Overflow	Pipe Flow (l/s) 40.7 49.1 48.0 94.4 91.9 134.4 134.3 172.0 169.6 205.4 206.1 206.6 205.6	720, 960, 640, 10080 2, 30, 100 0, 0, 40 Status OK OK OK OK OK OK OK OK OK OK OK OK OK	
PN \$1.000 \$2.000 \$2.001 \$2.002 \$2.003 \$2.004 \$2.005 \$2.006 \$2.007 \$1.001 \$1.002 \$1.003 \$1.004	n Peric Climat US/MH Name S10 S11 S12 S13 S14 S15 S16 S17 S18 S19 S1 S2 S3	con (s) d(s) (e Chan Storm Rank 6 7 7 7 7 7 7 7 7 7 7 7 7 7	<pre>(mins) years) ge (%) Water Level (m) 7.745 7.758 7.751 7.743 7.698 7.661 7.636 7.623 7.532 7.400 6.266 6.168 5.633</pre>	1440, 2 Surcharged Depth (m) -0.245 -0.232 -0.238 -0.245 -0.289 -0.325 -0.349 -0.362 -0.451 -0.282 0.166 0.168 -0.267	<pre>Flooded Volume (m³) 0.000</pre>	<pre>0, 4320, Flow / Cap. 0.69 0.39 0.38 1.02 0.74 0.81 0.56 1.03 0.70 0.55 0.59 0.60 0.59</pre>	360, 480 5760, 5 Overflow	Pipe Flow (l/s) 40.7 49.1 48.0 94.4 91.9 134.4 134.3 172.0 169.6 205.4 206.1 206.6 205.6	720, 960, 640, 10080 2, 30, 100 0, 0, 40 Status OK OK OK OK OK OK OK OK OK OK OK OK OK	
PN \$1.000 \$2.000 \$2.001 \$2.002 \$2.003 \$2.004 \$2.005 \$2.006 \$2.007 \$1.001 \$1.002 \$1.003 \$1.004	n Peric Climat US/MH Name S10 S11 S12 S13 S14 S15 S16 S17 S18 S19 S1 S2 S3	con (s) d(s) (e Chan Storm Rank 6 7 7 7 7 7 7 7 7 7 7 7 7 7	<pre>(mins) years) ge (%) Water Level (m) 7.745 7.758 7.751 7.743 7.698 7.661 7.636 7.623 7.532 7.400 6.266 6.168 5.633</pre>	1440, 2 Surcharged Depth (m) -0.245 -0.232 -0.238 -0.245 -0.289 -0.325 -0.349 -0.362 -0.451 -0.282 0.166 0.168 -0.267	<pre>Flooded Volume (m³) 0.000</pre>	<pre>0, 4320, Flow / Cap. 0.69 0.39 0.38 1.02 0.74 0.81 0.56 1.03 0.70 0.55 0.59 0.60 0.59</pre>	360, 480 5760, 5 Overflow	Pipe Flow (l/s) 40.7 49.1 48.0 94.4 91.9 134.4 134.3 172.0 169.6 205.4 206.1 206.6 205.6	720, 960, 640, 10080 2, 30, 100 0, 0, 40 Status OK OK OK OK OK OK OK OK OK OK OK OK OK	
PN \$1.000 \$2.000 \$2.001 \$2.002 \$2.003 \$2.004 \$2.005 \$2.006 \$2.007 \$1.001 \$1.002 \$1.003 \$1.004	n Peric Climat US/MH Name S10 S11 S12 S13 S14 S15 S16 S17 S18 S19 S1 S2 S3	con (s) d(s) (e Chan Storm Rank 6 7 7 7 7 7 7 7 7 7 7 7 7 7	<pre>(mins) years) ge (%) Water Level (m) 7.745 7.758 7.751 7.743 7.698 7.661 7.636 7.623 7.532 7.400 6.266 6.168 5.633</pre>	1440, 2 Surcharged Depth (m) -0.245 -0.232 -0.238 -0.245 -0.289 -0.325 -0.349 -0.362 -0.451 -0.282 0.166 0.168 -0.267	<pre>Flooded Volume (m³) 0.000</pre>	<pre>0, 4320, Flow / Cap. 0.69 0.39 0.38 1.02 0.74 0.81 0.56 1.03 0.70 0.55 0.59 0.60 0.59</pre>	360, 480 5760, 5 Overflow	Pipe Flow (l/s) 40.7 49.1 48.0 94.4 91.9 134.4 134.3 172.0 169.6 205.4 206.1 206.6 205.6	720, 960, 640, 10080 2, 30, 100 0, 0, 40 Status OK OK OK OK OK OK OK OK OK OK OK OK OK	
PN \$1.000 \$2.000 \$2.001 \$2.002 \$2.003 \$2.004 \$2.005 \$2.006 \$2.007 \$1.001 \$1.002 \$1.003 \$1.004	n Peric Climat US/MH Name S10 S11 S12 S13 S14 S15 S16 S17 S18 S19 S1 S2 S3	con (s) d(s) (e Chan Storm Rank 6 7 7 7 7 7 7 7 7 7 7 7 7 7	<pre>(mins) years) ge (%) Water Level (m) 7.745 7.758 7.751 7.743 7.698 7.661 7.636 7.623 7.532 7.400 6.266 6.168 5.633</pre>	1440, 2 Surcharged Depth (m) -0.245 -0.232 -0.238 -0.245 -0.289 -0.325 -0.349 -0.362 -0.451 -0.282 0.166 0.168 -0.267	<pre>Flooded Volume (m³) 0.000</pre>	<pre>0, 4320, Flow / Cap. 0.69 0.39 0.38 1.02 0.74 0.81 0.56 1.03 0.70 0.55 0.59 0.60 0.59</pre>	360, 480 5760, 5 Overflow	Pipe Flow (l/s) 40.7 49.1 48.0 94.4 91.9 134.4 134.3 172.0 169.6 205.4 206.1 206.6 205.6	720, 960, 640, 10080 2, 30, 100 0, 0, 40 Status OK OK OK OK OK OK OK OK OK OK OK OK OK	
PN \$1.000 \$2.000 \$2.001 \$2.002 \$2.003 \$2.004 \$2.005 \$2.006 \$2.007 \$1.001 \$1.002 \$1.003 \$1.004	n Peric Climat US/MH Name S10 S11 S12 S13 S14 S15 S16 S17 S18 S19 S1 S2 S3	con (s) d(s) (e Chan Storm Rank 6 7 7 7 7 7 7 7 7 7 7 7 7 7	<pre>(mins) years) ge (%) Water Level (m) 7.745 7.758 7.751 7.743 7.698 7.661 7.636 7.623 7.532 7.400 6.266 6.168 5.633</pre>	1440, 2 Surcharged Depth (m) -0.245 -0.232 -0.238 -0.245 -0.289 -0.325 -0.349 -0.362 -0.451 -0.282 0.166 0.168 -0.267	<pre>Flooded Volume (m³) 0.000</pre>	<pre>0, 4320, Flow / Cap. 0.69 0.39 0.38 1.02 0.74 0.81 0.56 1.03 0.70 0.55 0.59 0.60 0.59</pre>	360, 480 5760, 5 Overflow	Pipe Flow (l/s) 40.7 49.1 48.0 94.4 91.9 134.4 134.3 172.0 169.6 205.4 206.1 206.6 205.6	720, 960, 640, 10080 2, 30, 100 0, 0, 40 Status OK OK OK OK OK OK OK OK OK OK OK OK OK	
PN \$1.000 \$2.000 \$2.001 \$2.002 \$2.003 \$2.004 \$2.005 \$2.006 \$2.007 \$1.001 \$1.002 \$1.003 \$1.004	n Peric Climat US/MH Name S10 S11 S12 S13 S14 S15 S16 S17 S18 S19 S1 S2 S3	con (s) d(s) (e Chan Storm Rank 6 7 7 7 7 7 7 7 7 7 7 7 7 7	<pre>(mins) years) ge (%) Water Level (m) 7.745 7.758 7.751 7.743 7.698 7.661 7.636 7.623 7.532 7.400 6.266 6.168 5.633</pre>	1440, 2 Surcharged Depth (m) -0.245 -0.232 -0.238 -0.245 -0.289 -0.325 -0.349 -0.362 -0.451 -0.282 0.166 0.168 -0.267	Flooded Volume (m ³) 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	<pre>0, 4320, Flow / Cap. 0.69 0.39 0.38 1.02 0.74 0.81 0.56 1.03 0.70 0.55 0.59 0.60 0.59</pre>	360, 480 5760, 5 Overflow	Pipe Flow (l/s) 40.7 49.1 48.0 94.4 91.9 134.4 134.3 172.0 169.6 205.4 206.1 206.6 205.6	720, 960, 640, 10080 2, 30, 100 0, 0, 40 Status OK OK OK OK OK OK OK OK OK OK OK OK OK	

	Page 10
	Micro
Designed by 597	Drainage
Checked by	Diamage
Network 2019.1	1
	Checked by

Rainfall Hyetograph for 15 minute 30 year Winter I+0% (Storm)

Time (mins)	Rain (mm/hr)	Time (mins)	Rain (mm/hr)		Rain (mm/hr)		Rain (mm/hr)	-	Rain (mm/hr)
1	15.475	4	37.233	7	138.780	10	97.507	13	29.412
2	28.240	5	60.266	8	161.203	11	60.266	14	28.240
3	29.412	6	97.507	9	138.780	12	37.233	15	15.475

Doran Consulting	r Limi	ted							Page 11
Norwood House									
96-102 Great Vic	toria	Stree	t						
Belfast, BT2 7BE	1								Micco
Date 25/04/2022	12:27			Desi	gned by	597			Micro
File Drainage De	sian	2022-0	4-11 8		ked by				Drainac
Innovyze	.orgii	2022 0			ork 201	Q 1			
				INC UW	OIK 201	J.1			
Su	mmary	Wizar	<u>d of 1</u>	5 minute	100 yea	ar Wint	er I+40	% for	Storm
				-	ion Crite				
	Area								Flow 0.000
	II.e			ins) 0		ADD Fact			prage 0.000
Manhole				(mm) 0		r Person			cient 0.800 /day) 0.000
				l/s) 0.000	-		. PCI Day	(1) PCL	
	-						0		/
-	-								e/Area Diagrams O
Number of O	nline	Control	s I Num	ber of Sto:	rage Stri	ictures	0 Number	oi Rea.	l Time Controls O
			-	Synthetic R	Rainfall	Details			
Ra	ainfall	Model	-		,	,	000 Cv (S	,	
		Region	Englanc	d and Wales	Rati	or 0.	350 Cv (W	linter)	0.840
	Mer	anin fa		Diel Wenni	m er (mm)	200 0			r
	Mai	rgin ioi	r Flood	Risk Warni Analysis T	-				
				-	Status		ICICIA DO	4645 01	
		Prof	ile(s)				C	ummer a	nd Winter
	Durati		. ,	15, 30, 60,	. 120. 18	30, 240,			
		- (-)	· - /						40, 10080
Return	n Perio	od(s) (<u>r</u>	years)					2	, 30, 100
	Climat	ce Chang	ge (%)						0, 0, 40
WARNING: The a	nalysi	s maybe	unstabl	le. Please	see the	method o	of analys	is help	for more details.
			Water	Surcharged	Flooded			Pipe	
	US/MH	Storm	Level	Depth	Volume	Flow /	Overflow	Flow	
PN	Name	Rank	(m)	(m)	(m³)	Cap.	(l/s)	(1/s)	Status
S1.000	S10	2	8.240	0.250	0.836	1.23		72.6	FLOOD
S2.000		1	8.247	0.257		0.71		88.3	FLOOD
S2.000		1	8.246	0.257	6.225	0.66		82.4	FLOOD
S2.002		1	8.246	0.258	6.079	1.78		164.7	FLOOD
S2.003		1	8.245	0.258	4.813	1.27		159.1	FLOOD
S2.004		1	8.246	0.260	5.822	1.43		237.5	FLOOD
S2.005		1	8.244	0.259	4.080	0.93		225.2	FLOOD
S2.006		1	8.244	0.259	4.497	1.78		296.5	FLOOD
\$2 007	S18	1	8 241	0 258	2 008	1 0.8		261 8	FLOOD

0.258

0.291

1.594

1.587

-0.248

-0.299

2.008

0.295

0.000

0.000

0.000

0.000

1.08

0.78

0.72

0.64

0.65

0.50

261.8

289.5

224.6

224.6

250.0 SURCHARGED

223.9 SURCHARGED

FLOOD

FLOOD

OK

OK

S2.007

S1.001

S1.002

S1.003

S1.004

S1.005

S18

S19

S1

S2

s3

S4

1 8.241

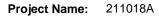
3 7.973

4 7.694

4 7.587 3 5.652 3 5.501

	Page 12
	Micro
Designed by 597	Drainage
Checked by	Diamage
Network 2019.1	
	Checked by

Rainfall Hyetograph for 15 minute 100 year Winter I+40% (Storm)


Time (mins)	Rain (mm/hr)	Time (mins)	Rain (mm/hr)		Rain (mm/hr)		Rain (mm/hr)	Time (mins)	Rain (mm/hr)
1	27.961	4	67.274	7	250.754	10	176.180	13	53.144
2	51.025	5	108.892	8	291.270	11	108.892	14	51.025
3	53.143	6	176.180	9	250.754	12	67.274	15	27.961

APPENDIX D: ACO DRAINAGE SYSTEM CALCULATIONS

SBQ1-DCL-CIV-SBKXX-CA-CE-000006

+ DETAILED RUN REPORT - Page 1

Location: HRWM+J3 Middlesbrough, UK

Project Notes:

+ INPUT DATA:- Run 1: 'ACO Calcs', Option A '131m'

M5-60: 17.3m	m/hr		Ratio R: 0.34							
LENGTH	AREA	SLOPE	IMPERMEABILITY	RETURN	CLIMATE	STORM	RAINFALL	INFLOW	Point Inflow	Cumulative
(m)	(m2)	(%)	FACTOR	PERIOD	CHANGE	DURATION	INTENSITY	CONTROL	Interlinked from	Point Inflows
				(years)	(%)	(mins)	(mm/hr)	(l/s/m)		l/s
131.00	6,910.25	0.00	1.00	30	0.00	-	118.91	None	None	0.00

+ CHANNEL LAYOUT

+ RAINFALL DATA

Designer: Ciaran Black

Duration	Intensity (mm/h)
5 mins	96.19
10 mins	75.16
15 mins	65.21
30 mins	41.82
1 hour	27.23
2 hours	16.93
4 hours	10.09
6 hours	7.52
10 hours	5.14
24 hours	2.67
48 hours	1.53

Project Date: 4th May 2022

Print Date: 4th May 2022

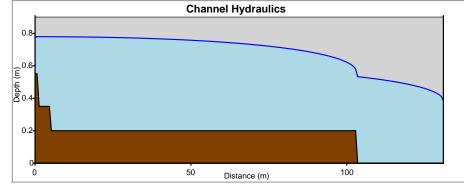
+ DETAILED RUN REPORT - Page 2

Project Name: 211018A

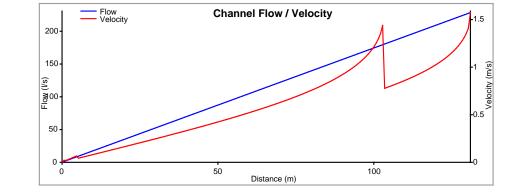
Qmax

Location: HRWM+J3 Middlesbrough, UK

Designer: Ciaran Black

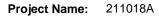

Project Date: 4th May 2022

Print Date: 4th May 2022

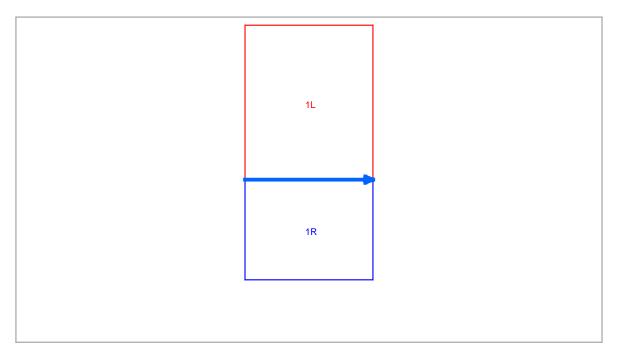

+ OUTPUTS:- Run 1: 'ACO Calcs', Option A '131m'

OUTFLOW	CAPACITY	MAX* VELOCITY	MIN FREEBOARD	EXCAVATION	CONCRETE
(I/s)	(%)	(m/s)	(m)	VOLUME	VOLUME
				(m3)	(m3)
228.49	86.00	1.57	0.12	132.61	82.52

	1	2	3	4
System	Qmax 350	Qmax 550	Qmax 700	Qmax 900
W - Width (mm)	350	367	467	600
H - Invert (mm)	550	800	950	1155
Length (m)	1.00	4.00	98.00	28.00



+ DETAILED RUN REPORT - Page 1



HRWM+J3 Middlesbrough, UK Location:

Project Notes:

+ INPUT	DATA:- Run 1: '/	ACO Calcs',	Option B '26.5m'							
M5-60: 1	7.3mm/hr		Ratio R: 0.34							
LENGTH	AREA	SLOPE	IMPERMEABILITY	RETURN	CLIMATE	STORM	RAINFALL	INFLOW	Point Inflow	Cumulative
(m)	(m2)	(%)	FACTOR	PERIOD	CHANGE	DURATION	INTENSITY	CONTROL	Interlinked from	Point Inflows
				(years)	(%)	(mins)	(mm/hr)	(l/s/m)		l/s
26.50	1,397.88	0.00	1.00	30	0.00	5 mins	96.19	None	None	0.00

+ CHANNEL LAYOUT

+ RAINFALL DATA

Designer: Ciaran Black

Duration	Intensity (mm/h)
5 mins	96.19
10 mins	75.16
15 mins	65.21
30 mins	41.82
1 hour	27.23
2 hours	16.93
4 hours	10.09
6 hours	7.52
10 hours	5.14
24 hours	2.67
48 hours	1.53

Project Date: 4th May 2022

Print Date: 4th May 2022

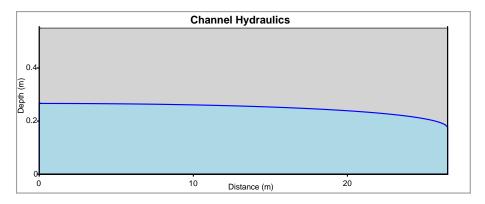
+ DETAILED RUN REPORT - Page 2

Project Name: 211018A

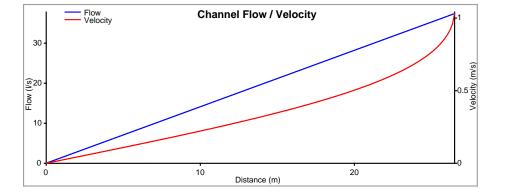
Location: HRWM+J3 Middlesbrough, UK

Designer: Ciaran Black

Project Date: 4th May 2022


Print Date: 4th May 2022

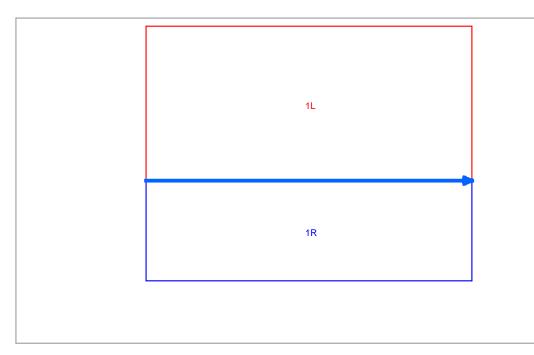
+ OUTPUTS:- Run 1: 'ACO Calcs', Option B '26.5m'


OUTFLOW	CAPACITY	MAX* VELOCITY	MIN FREEBOARD	EXCAVATION	CONCRETE
(I/s)	(%)	(m/s)	(m)	VOLUME	VOLUME
				(m3)	(m3)
37.39	42.39	1.03	0.28	17.65	12.06

Qmax

	1
System	Qmax 550
W - Width (mm)	367
H - Invert (mm)	800
Length (m)	26.50

+ DETAILED RUN REPORT - Page 1


Project Name: 211018A

HRWM+J3 Middlesbrough, UK Location:

Project Notes:

+ INPUT DATA:- Run 1: 'ACO Calcs',			Option C '67.5m'							
M5-60: 17.3mm/hr			Ratio R: 0.34							
LENGTH	AREA	SLOPE	IMPERMEABILITY	RETURN	CLIMATE	STORM	RAINFALL	INFLOW	Point Inflow	Cumulative
(m)	(m2)	(%)	FACTOR	PERIOD	CHANGE	DURATION	INTENSITY	CONTROL	Interlinked from	Point Inflows
				(years)	(%)	(mins)	(mm/hr)	(l/s/m)		l/s
67.50	3,560.63	0.00	1.00	30	0.00	5 mins	96.19	None	None	0.00

+ CHANNEL LAYOUT

+ RAINFALL DATA

Designer: Ciaran Black

Duration	Intensity (mm/h)
5 mins	96.19
10 mins	75.16
15 mins	65.21
30 mins	41.82
1 hour	27.23
2 hours	16.93
4 hours	10.09
6 hours	7.52
10 hours	5.14
24 hours	2.67
48 hours	1.53

Project Date: 4th May 2022

Print Date: 4th May 2022

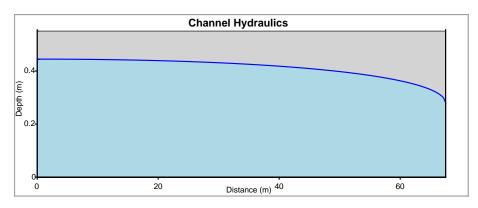
+ DETAILED RUN REPORT - Page 2

Project Name: 211018A

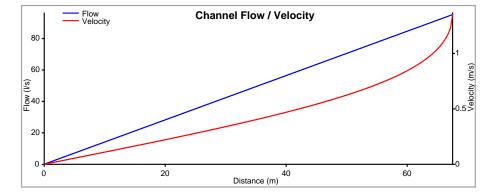
Location: HRWM+J3 Middlesbrough, UK

Designer: Ciaran Black

Project Date: 4th May 2022

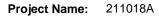

Print Date: 4th May 2022


+ OUTPUTS:- Run 1: 'ACO Calcs', Option C '67.5m'


OUTFLOW	CAPACITY	MAX* VELOCITY	MIN FREEBOARD	EXCAVATION	CONCRETE
(I/s)	(%)	(m/s)	(m)	VOLUME	VOLUME
				(m3)	(m3)
95.24	83.75	1.35	0.11	44.96	30.71

Qmax

	1
System	Qmax 550
W - Width (mm)	367
H - Invert (mm)	800
Length (m)	67.50



+ DETAILED RUN REPORT - Page 1

Location: HRWM+J3 Middlesbrough, UK

Project Notes:

+ INPUT DATA:- Run 1: 'ACO Calcs', Option A '131m'

M5-60: 17.3m	m/hr		Ratio R: 0.34							
LENGTH	AREA	SLOPE	IMPERMEABILITY	RETURN	CLIMATE	STORM	RAINFALL	INFLOW	Point Inflow	Cumulative
(m)	(m2)	(%)	FACTOR	PERIOD	CHANGE	DURATION	INTENSITY	CONTROL	Interlinked from	Point Inflows
				(years)	(%)	(mins)	(mm/hr)	(l/s/m)		l/s
131.00	6,910.25	0.00	1.00	100	40.00	-	166.48	None	None	0.00

+ CHANNEL LAYOUT

+ RAINFALL DATA

Designer: Ciaran Black

Duration	Intensity (mm/h)
5 mins	118.91
10 mins	92.91
15 mins	81.72
30 mins	52.41
1 hour	34.43
2 hours	21.48
4 hours	12.67
6 hours	9.46
10 hours	6.43
24 hours	3.28
48 hours	1.88

Project Date: 4th May 2022

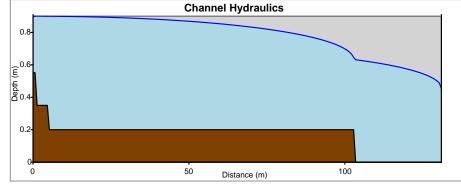
Print Date: 4th May 2022

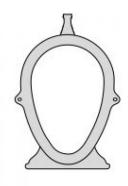
+ DETAILED RUN REPORT - Page 2

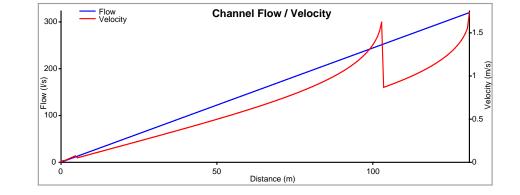
Project Name: 211018A

Qmax

Location: HRWM+J3 Middlesbrough, UK


Designer:Ciaran BlackProject Date: 4th May 2022


Print Date: 4th May 2022

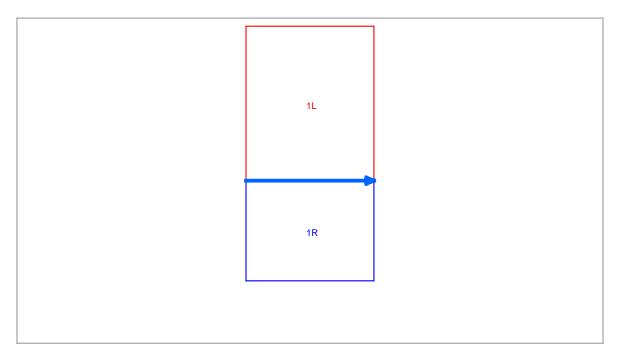

+ OUTPUTS:- Run 1: 'ACO Calcs', Option A '131m'

OUTFLOW	CAPACITY	MAX* VELOCITY	MIN FREEBOARD	EXCAVATION	CONCRETE
(l/s)	(%)	(m/s)	(m)	VOLUME	VOLUME
				(m3)	(m3)
319.88	100.00	1.73	0.00	132.61	82.52

	1	2	3	4
System	Qmax 350	Qmax 550	Qmax 700	Qmax 900
W - Width (mm)	350	367	467	600
H - Invert (mm)	550	800	950	1155
Length (m)	1.00	4.00	98.00	28.00

+ DETAILED RUN REPORT - Page 1

Project Name: 211018A


Location: HRWM+J3 Middlesbrough, UK

Project Notes:

+ INPUT DATA:- Run 1: 'ACO Calcs', Option B '26.5m' M5-60: 17.3mm/hr Ratio R: 0.34 LENGTH AREA SLOPE IMPERMEABILITY RETURN CLIMATE STORM RAINFALL INFLOW **Point Inflow** Cumulative (m) (m2) (%) FACTOR PERIOD CHANGE DURATION INTENSITY CONTROL Interlinked from Point Inflows (years) (%) (mins) (mm/hr) (l/s/m) l/s 1,397.88 0.00 1.00 100 40.00 5 mins 166.48 None None 0.00 26.50

Designer: Ciaran Black

+ CHANNEL LAYOUT

+ RAINFALL DATA

Duration	Intensity (mm/h)
5 mins	118.91
10 mins	92.91
15 mins	81.72
30 mins	52.41
1 hour	34.43
2 hours	21.48
4 hours	12.67
6 hours	9.46
10 hours	6.43
24 hours	3.28
48 hours	1.88

Project Date: 4th May 2022

Print Date: 4th May 2022

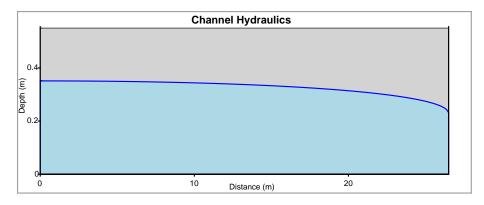
+ DETAILED RUN REPORT - Page 2

Project Name: 211018A

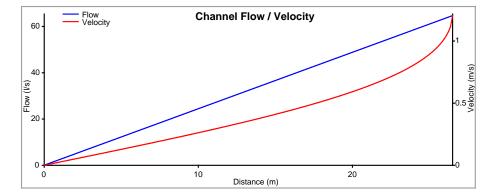
Location: HRWM+J3 Middlesbrough, UK

Designer: Ciaran Black

Project Date: 4th May 2022


Print Date: 4th May 2022

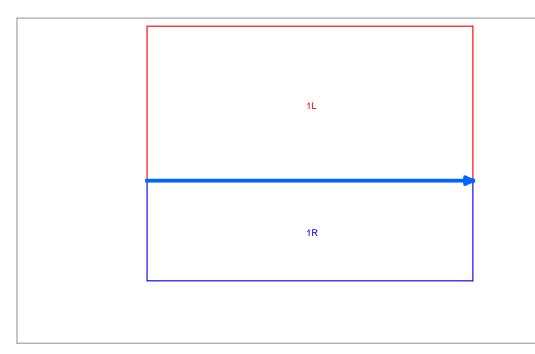

+ OUTPUTS:- Run 1: 'ACO Calcs', Option B '26.5m'


OUTFLOW	CAPACITY	MAX* VELOCITY	MIN FREEBOARD	EXCAVATION	CONCRETE
(I/s)	(%)	(m/s)	(m)	VOLUME	VOLUME
				(m3)	(m3)
64.71	62.17	1.20	0.20	17.65	12.06

Qmax

	1
System	Qmax 550
W - Width (mm)	367
H - Invert (mm)	800
Length (m)	26.50

+ DETAILED RUN REPORT - Page 1


Project Name: 211018A

Location: HRWM+J3 Middlesbrough, UK

Project Notes:

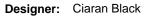
+ INPUT DATA:- Run 1: 'ACO Calcs',			Option C '67.5m'							
M5-60: 17.3mm/hr			Ratio R: 0.34							
LENGTH	AREA	SLOPE	IMPERMEABILITY	RETURN	CLIMATE	STORM	RAINFALL	INFLOW	Point Inflow	Cumulative
(m)	(m2)	(%)	FACTOR	PERIOD	CHANGE	DURATION	INTENSITY	CONTROL	Interlinked from	Point Inflows
				(years)	(%)	(mins)	(mm/hr)	(l/s/m)		l/s
67.50	3,560.63	0.00	1.00	100	40.00	5 mins	166.48	None	None	0.00

+ CHANNEL LAYOUT

+ RAINFALL DATA

Designer: Ciaran Black

Duration	Intensity (mm/h)
5 mins	118.91
10 mins	92.91
15 mins	81.72
30 mins	52.41
1 hour	34.43
2 hours	21.48
4 hours	12.67
6 hours	9.46
10 hours	6.43
24 hours	3.28
48 hours	1.88


Project Date: 4th May 2022

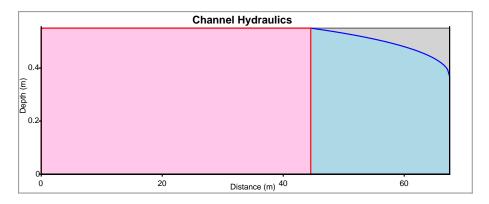
Print Date: 4th May 2022

+ DETAILED RUN REPORT - Page 2

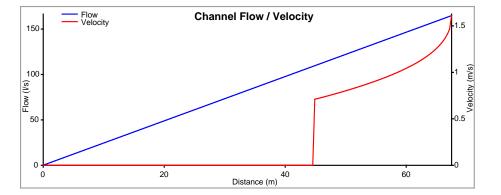
Project Name: 211018A

Location: HRWM+J3 Middlesbrough, UK

Project Date: 4th May 2022


Print Date: 4th May 2022

+ OUTPUTS:- Run 1: 'ACO Calcs', Option C '67.5m'


OUTFLOW	CAPACITY	MAX* VELOCITY	MIN FREEBOARD	EXCAVATION	CONCRETE
(I/s)	(%)	(m/s)	(m)	VOLUME	VOLUME
				(m3)	(m3)
164.82	100.00	1.61	0.00	44.96	30.71

Qmax

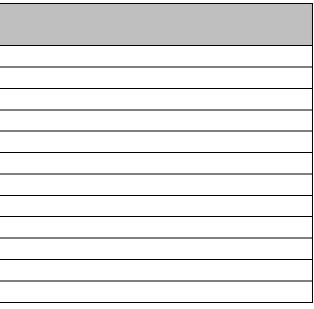
1		
System	Qmax 550	
W - Width (mm)	367	
H - Invert (mm)	800	
Length (m)	67.50	

APPENDIX E: DESIGNERS RISK ASSESSMENT

SBQ1-DCL-CIV-SBKXX-CA-CE-000006

PROJECT: Teesworks South Bank Quay (Phase 1) DESIGNERS RISK ASSESSMENT DRAINAGE JOB NO: 211018A DOCUMENT NUMBER: SBQ1-DCL-CIV-SBKXX-RA-CE -000006-P01 STATUS: S5

Coordination between the designer and contractor at the design phase


Weekly review meetings are held, these meetings are attended by the design team and the contracting team. During the meetings the design is discussed so that any H&S issues are identified and considered in line with the principles of prevention. The review of the design also considers construction methodology, phasing, sequencing, and interfaces with temporary and permanent works. The discussions are robust with information shared around the team any highlighted issues are further discussed using screen sharing / BIM model views to ensure everyone can participate and add their input to the discussions. Any actions arising from the discussions are assigned to the relevant team members for action and close out is further reviewed at the next meeting. Any design H&S issues that remain as significant residual risks to be manged during the construction phase or future operations are documented via the DRA and circulated across the contracting team, so everyone has sight of the relevant information.

Our Design service is managed through our BSI accredited Integrated Management System. Our service meets the requirements of the CDM Regulations, and our working practices adhere to HSE's L153 document. Doran Consulting has procedures in place to ensure compliance with the Designer's duties under the CDM Regulations and Regulation 9 in particular. The procedures to be followed by our team providing design services are detailed in our in-house Construction Design Management (CDM) Manual.

Standard Tasks

Task	Standard Task?
	Refer to Table 4 and 5 for further information
Working near or over deep water	Non-Standard
Trenching works	Standard
Pipe laying	Standard
Manhole chamber construction	Standard
Steel fixing to interceptor surround	Standard
Concrete casting of interceptor surround	Standard
Steel fixing to ACO channel system	Standard
Concrete casting of ACO channel system	Standard
Installation of tidal flap valve	Non-Standard
Operational Loading	Non-Standard

Table 1 – Standard and Non-standard tasks summary table related to the drainage construction & installation

Table 2 – Designer's Risk Assessment for the Construction Phase

No	Element	Hazard Information	Who might be	Efforts to eliminate by design	Level of risk	Further measures to Reduce, Inform and	Action by who and when	Revised	Open /
			harmed and how		(based on what	Control		level of	closed
					you are doing)			risk	
CO	NSTRUCTION		•		•				
1	Edge	Construction of	Construction	Not possible	High	Contractor to install edge protection along the	Action by Principal Contractor	Low	Open
	Protection	drainage elements	operatives			length of the capping beam during the			
		immediately adjacent				pavement construction works.			
		to capping beam							
1	Tidal Flap	Installation of tidal	Construction	Not possible	High	Contractor to provide appropriate PPE to all	Action by Principal Contractor	Low	Open
	Valve	flap valve over deep	operatives			operatives. Contractor to provide appropriate			
		water				temporary working platform for installation			
						works. Safety boat to be employed.			

Table 3 – Designer's Risk Assessment for the Operational Phase

No	Element	Hazard Information	Who might be	Efforts to eliminate by design	Level of risk	Further measures to Reduce, Inform and	Action by who and when	Revised	Open /
			harmed and how		(based on what	Control		level of	closed
					you are doing)			risk	
OP	ERATIONAL PHA	ASE			1			•	-
1	Pavement	Failure of drainage	Future use	Cannot eliminate by design due to the	Low	The concrete Pavement has been designed in	Concrete pavement loading and assumptions	Low	Open
		elements due to the		nature of the works		accordance with the Structural Design of	presented in Design Acceptance in Principle		
		due to the				heavy duty Pavements for Ports and other	and Calculation packages, which shall be		
		overloading of the				industries (4 th Edition) and through finite	included in H&S file/Operations manual.		
		concrete pavement				element modelling.			
		by the future operator				Loads have been defined by the Client to suit	Client and future tenants to review design		
						the proposed operations at the facility.	loading prior to their operations.		
									1

Table 4 – Hazard and risk review form

Proje	ect: Teesworks South Bank Quay (Phase 1)		Prepared by: PMM	
Elem	ent of project and identifier: Concrete Pavement		Date: 16/02/2022	
Stage	Stage: Construction build Reviewed by: FD			
Job r	no: 211018B		Date: 16/02/2022	
1	Is element made up of 'standard tasks"?	YES	If 'NO' go to 3	
	IF 'YES'.			
2	Does it comply with any contemporary advice?	N/A	Schedule advice adopted	
		N/A	Has an explanation been produced?	
	If 'YES'. PROCESS ENDS		An explanation must always be produced	
3	Does element contain 'non-standard tasks'	YES		
	Are these items covered by any amended	NO		
	contemporary industry practice? If 'YES'. PROCESS ENDS.			
	If 'NO',			
4	Using reasonable engineering judgement			
	FOR EACH RISK ISSUE			
	Has the issue been discussed with	YES	Explanation, if 'NO'	
	contactors/operators etc as appropriate?			
	If 'YES', does the design and information provided align with the advice received?	YES	Explanation, if 'NO'	
	If no discussion has occurred with other parties, has an explanation been recorded as to the engineering judgement used to form a solution?		There must be an explanation	
SIGN	IIFICANT RESIDUAL RISK INFORMATION	1		
5	Has significant residual risk information been made available to other?	YES To Principal	This will only apply to 'non-standard tasks'	
		Contractor / PM Team	The answer must be 'YES'	

Table 5 – List of guidance

Activity	UK Regs	Performance standards
	Hazardous su	ubstances
Construction Dust	Code of Practice for Demolition	CIS36 - Construction dust
		https://www.citb.co.uk/media/e3kgvp1o/cis36.pdf
	BS6187: 2000	
Skin exposure	The Control of Substances	HSG262 - Managing skin exposure risks at work
	Hazardous to Health	https://www.hse.gov.uk/pubns/priced/hsg262.pdf
From products such as:	Regulations 2002	
Cement		Skin checks for dermatitis (HSE)
		https://www.hse.gov.uk/skin/posters/skindermatitis.pdf
Working with substances	The Control of Substances	ING136 - Working with substances hazardous to health
hazardous to health	Hazardous to Health	https://www.hse.gov.uk/pubns/indg136.pdf
	Regulations 2002	
Such as:		L5 - Control of substances hazardous to health
Isocyanates		https://www.hse.gov.uk/pubns/priced/l5.pdf
Lead	The Control of Lead at Work	L132 – Control of lead at work
	Regulations 2002	https://www.hse.gov.uk/pubns/priced/l132.pdf
Solvent	The Solvent Emissions (England	CIS27- Solvents
	and Wales) Regulations 2004	https://www.hse.gov.uk/pubns/cis27.pdf
Workplace exposure limits	The Control of Substances	EH40/2005 - Workplace exposure limits
	Hazardous to Health	https://www.hse.gov.uk/pubns/priced/eh40.pdf
	Regulations 2002	
	Physical III he	ealth risks
Noise	The Control of Noise (Code of	L108 - Controlling noise at work
	Practice for Construction and	https://www.hse.gov.uk/pubns/priced/l108.pdf
	Open Sites) (England) Order	
	2015	INDG362 - Noise at work
	2010	https://www.hse.gov.uk/pubns/indg362.pdf
		https://www.nse.gov.uk/publis/inugsoz.pui
Vibration	The Control of Vibration at Work	L140 - Hand-arm vibration
	Regulations 2005	https://www.hse.gov.uk/pubns/priced/l140.pdf
	-	

Activity	UK Regs	Electronic Copy Performance standards
Manual handling	The Manual Handling	L23 - Manual handling
	Operations Regulations 1992	https://www.hse.gov.uk/pubns/priced/l23.pdf
	The Lifting Operations and	INDG143 - Manual handling at work A brief guide
	Lifting Equipment Regulations	https://www.hse.gov.uk/pubns/indg143.pdf
	1998	
		L22 - Safe use of work equipment
		https://www.hse.gov.uk/pubns/priced/l22.pdf
Repetitive work	The Manual Handling	L22 - Safe use of work equipment
	Operations Regulations 1992	https://www.hse.gov.uk/pubns/priced/l22.pdf
	The Provision and Use of Work	
	Equipment Regulations 1998	
	Cancer and C	construction
Asbestos	The Control of Asbestos	HSG247 - Asbestos: The licensed contractors' guide
	Regulations 2012	https://www.hse.gov.uk/pubns/priced/hsg247.pdf
		L143 - Managing and working with asbestos
		https://www.hse.gov.uk/pubns/priced/l143.pdf
Silica	The Control of Substances	INDG463 - Control of exposure to silica dust
	Hazardous to Health	https://www.hse.gov.uk/pubns/indg463.pdf
	Regulations 2002	
		EH40/2005 - Workplace exposure limits
		https://www.hse.gov.uk/pubns/priced/eh40.pdf
Diesel engine exhaust	The Control of Substances	INDG286- Diesel engine exhaust emissions
	Hazardous to Health	https://www.hse.gov.uk/pubns/indg286.pdf
	Regulations 2002	
Paint	The Control of Substances	See: 'Solvents', 'lead', 'construction dust' and asbestos'
	Hazardous to Health	above.
	Regulations 2002	
		EIS32 - Chromate Primer paints
Skin Concer	The Control of Output	https://www.hse.gov.uk/pubns/eis32.pdf -
Skin Cancer	The Control of Substances	ING136- Working with substances hazardous to health
	Hazardous to Health	https://www.hse.gov.uk/pubns/indg136.pdf
	Regulations 2002	

UK Regs	Performance standards
Site Organ	lisation
The Workplace (Health, Safety	CIS59 - Provision of welfare facilities during construction
and Welfare) Regulations 1992	work
	https://www.hse.gov.uk/pubns/cis59.pdf
	CIS62 - Welfare facilities
	https://www.hse.gov.uk/pubns/cis62.pdf
	HSG150 - Health and safety in construction
	https://www.hse.gov.uk/pubns/priced/hsg150.pdf
	L153 - Managing health and safety in construction
	https://www.hse.gov.uk/pubns/priced/l153.pdf
The Construction (Design and	CIS80 Construction Phase Plan (CDM 2015) What you
Management) Regulations 2015	need to know as a busy builder
	https://www.hse.gov.uk/pubns/cis80.pdf
	HSG 263 - Involving your workforce in health and safety
	https://www.hse.gov.uk/pubns/priced/hsg263.pdf
	HSG150 - Health and safety in construction
	https://www.hse.gov.uk/pubns/priced/hsg150.pdf
	and Welfare) Regulations 1992

		Electronic Copy		
Activity	UK Regs	Performance standards		
Traffic management	The Construction (Design and	HSG144 The safe use of vehicles on construction sites		
	Management) Regulations 2015	https://www.hse.gov.uk/pubns/priced/hsg144.pdf		
		HSG150- Health and safety in construction		
		https://www.hse.gov.uk/pubns/priced/hsg150.pdf		
		INDG199 - Workplace transport safety		
		https://www.hse.gov.uk/pubns/indg199.pdf		
		CIS52 - Construction site transport safety: Safe use of site		
		dumpers https://www.hse.gov.uk/pubns/cis52.pdf		
		INDG378 - Safe use of skip loaders		
		https://www.hse.gov.uk/pubns/indg378.pdf		
		HSG268 - The health and safety toolbox How to control		
		risks at work		
		https://www.hse.gov.uk/pubns/priced/hsg268.pdf		
Site lighting	The Construction (Design and	HSG38- Lighting at work		
	Management) Regulations 2015	https://www.hse.gov.uk/pubns/priced/hsg38.pdf		
Protecting the public	The Construction (Design and	HSG151 - Protecting the public		
	Management) Regulations 2015	https://www.hse.gov.uk/pubns/priced/hsg151.pdf		
Materials storage and	The Construction (Design and	HSG150- Health and safety in construction		
waste management	Management) Regulations 2015	https://www.hse.gov.uk/pubns/priced/hsg150.pdf		
Administration	The Construction (Design and	HSG150 Health and safety in construction		
	Management) Regulations 2015	https://www.hse.gov.uk/pubns/priced/hsg150.pdf		
		INDG344		
		https://www.hse.gov.uk/pubns/indg344.pdf		
	Excava	tions		

Activity	UK Regs	Performance standards	
Activity	UK Regs	renormance standards	
Collapse of excavations	The Construction (Design and	HSG47 – The absolutely essential health and safety toolkit	
	Management) Regulations 2015	https://www.hse.gov.uk/pubns/priced/hsg47.pdf	
		HSG150 - Health and safety in construction	
		https://www.hse.gov.uk/pubns/priced/hsg150.pdf	
Falling or dislodging	The Construction (Design and	HSG47 – The absolutely essential health and safety toolkit	
material	Management) Regulations 2015	https://www.hse.gov.uk/pubns/priced/hsg47.pdf	
		HSG150 - Health and safety in construction	
		https://www.hse.gov.uk/pubns/priced/hsg150.pdf	
Falling into excavations	The Construction (Design and	HSG47 – The absolutely essential health and safety toolkit	
	Management) Regulations 2015	https://www.hse.gov.uk/pubns/priced/hsg47.pdf	
		HSG150 - Health and safety in construction	
		https://www.hse.gov.uk/pubns/priced/hsg150.pdf	
Undermining nearby	The Construction (Design and	HSG47 – The absolutely essential health and safety toolkit	
structures	Management) Regulations 2015	https://www.hse.gov.uk/pubns/priced/hsg47.pdf	
		HSG150 - Health and safety in construction	
		https://www.hse.gov.uk/pubns/priced/hsg150.pdf	

		Electronic Copy
Activity	UK Regs	Performance standards
Underground and	The Construction (Design and	HSG47 – The absolutely essential health and safety toolkit
overhead services	Management) Regulations 2015	https://www.hse.gov.uk/pubns/priced/hsg47.pdf
		HSG85 - Electricity at work
		https://www.hse.gov.uk/pubns/priced/hsg85.pdf
		CIS65- Avoiding concealed services and overhead power lines:
		https://www.hse.gov.uk/pubns/cis65.pdf
		GS6- Avoiding danger from overhead power lines
		https://www.hse.gov.uk/pubns/gs6.pdf
Inflow of ground and	The Construction (Design and	HSG47 – The absolutely essential health and safety toolkit
surface water	Management) Regulations 2015	https://www.hse.gov.uk/pubns/priced/hsg47.pdf
		HSG150 - Health and safety in construction
		https://www.hse.gov.uk/pubns/priced/hsg150.pdf
Damage to trees	The Construction (Design and	NJUG GUIDELINES FOR THE PLANNING,
	Management) Regulations 2015	INSTALLATION AND MAINTENANCE OF UTILITY APPARATUS IN PROXIMITY TO TREES
		http://streetworks.org.uk/wp-content/uploads/V4-Trees-
		Issue-2-16-11-2007.pdf
Other aspects of	The Construction (Design and	HSG47 – The absolutely essential health and safety toolkit
excavation safety	Management) Regulations 2015	https://www.hse.gov.uk/pubns/priced/hsg47.pdf
Such as:		HSG150 - Health and safety in construction
Hazardous fumes		https://www.hse.gov.uk/pubns/priced/hsg150.pdf
Inspection	The Construction (Design and	HSG47 – The absolutely essential health and safety toolkit
	Management) Regulations 2015	https://www.hse.gov.uk/pubns/priced/hsg47.pdf
		HSG150 - Health and safety in construction
		https://www.hse.gov.uk/pubns/priced/hsg150.pdf

		Electronic Copy				
Activity	UK Regs	Performance standards				
	Mobile Plant and vehicles					
Excavators	The Lifting Operations and	HSG144 -The safe use of vehicles on construction sites				
	Lifting Equipment Regulations	https://www.hse.gov.uk/pubns/priced/hsg144.pdf				
	1998					
		HSG150 - Health and safety in construction				
		https://www.hse.gov.uk/pubns/priced/hsg150.pdf				
		HSG47 -Avoiding danger from underground services				
		https://www.hse.gov.uk/pubns/priced/hsg47.pdf				
		L113-Safe use of lifting equipment				
		https://www.hse.gov.uk/pubns/priced/l113.pdf				
Telescopic handlers	The Lifting Operations and	HSG144 - The safe use of vehicles on construction sites				
relescopic natiolets						
	Lifting Equipment Regulations 1998	https://www.hse.gov.uk/pubns/priced/hsg144.pdf				
		HSG150 - Health and safety in construction				
		https://www.hse.gov.uk/pubns/priced/hsg150.pdf				
		L113 - Safe use of lifting equipment				
		https://www.hse.gov.uk/pubns/priced/I113.pdf				
MEWPS	The Lifting Operations and	HSG150 - Health and safety in construction				
	Lifting Equipment Regulations	https://www.hse.gov.uk/pubns/priced/hsg150.pdf				
	1998	<u>····poi/·····opoi/····opoi/····opoi/····opoi/····opoi/····opoi/····opoi/····opoi/····opoi/·····poi/·····opoi/·····opoi/·····opoi/·····opoi/·····opoi/·····opoi/·····opoi/······opoi/······opoi/·······opoi/······opoi/······opoi/······opoi/······opoi/······opoi/······opoi/··········</u>				
		GEIS6 - The selection, management and use of mobile				
		elevating work platforms				
		https://www.hse.gov.uk/pubns/geis6.pdf				
Dumper trucks	The Construction (Design and	HSG144 - The safe use of vehicles on construction sites				
	Management) Regulations 2015	https://www.hse.gov.uk/pubns/priced/hsg144.pdf				
		HSG150 - Health and safety in construction				
		https://www.hse.gov.uk/pubns/priced/hsg150.pdf				
		CIS52 - Construction site transport safety: Safe use of site				
		dumpers				
		https://www.hse.gov.uk/pubns/cis52.pdf				

		Electronic Copy		
Activity	UK Regs	Performance standards		
	Slips, trips,	and falls		
	Silps, tilps,			
Uneven surfaces	The Construction (Design and	HSG150 Health and safety in construction		
	Management) Regulations 2015	https://www.hse.gov.uk/pubns/priced/hsg150.pdf		
Obstacles	The Construction (Design and	HSG150 Health and safety in construction		
	Management) Regulations 2015	https://www.hse.gov.uk/pubns/priced/hsg150.pdf		
Trailing cables	The Construction (Design and	HSG150 Health and safety in construction		
	Management) Regulations 2015	https://www.hse.gov.uk/pubns/priced/hsg150.pdf		
Wet or slippery surfaces	The Construction (Design and	HSG150 Health and safety in construction		
	Management) Regulations 2015	https://www.hse.gov.uk/pubns/priced/hsg150.pdf		
Changes in level	The Construction (Design and	HSG150 Health and safety in construction		
	Management) Regulations 2015	https://www.hse.gov.uk/pubns/priced/hsg150.pdf		
	Fire			
Fire safety	The Construction (Design and	INDG168 - Fire safety in construction		
·	Management) Regulations 2015	https://www.hse.gov.uk/pubns/priced/hsg168.pdf		
	Washing at			
	Working at	i neight		
Roof work	The Work at Height Regulations	HSG150 Health and safety in construction		
	2005	https://www.hse.gov.uk/pubns/priced/hsg150.pdf		
		HSG33- Health and safety in roof work		
		https://www.hse.gov.uk/pubns/priced/hsg33.pdf		

Activity	UK Regs	Electronic Copy Performance standards
Activity	UK Regs	renormance standards
Fragile surfaces	The Work at Height Regulations	GEIS5 - Fragile roofs
	2005	https://www.hse.gov.uk/pubns/geis5.pdf
		HSG33 - Health and safety in roof work
		https://www.hse.gov.uk/pubns/priced/hsg33.pdf
		HSG150 Health and safety in construction
		https://www.hse.gov.uk/pubns/priced/hsg150.pdf
Ladders	The Work at Height Regulations	LA455- Safe Use of Ladders and Stepladders - a brief
	2005	guide
		https://ladderassociation.org.uk/la455/
Tower scaffolds	The Work at Height Regulations	CIS47- Inspection and reports
	2005	https://www.hse.gov.uk/pubns/cis47.pdf
		HSG150 Health and safety in construction
		https://www.hse.gov.uk/pubns/priced/hsg150.pdf
Mobile elevating moving	The Work at Height Regulations	GEIS6 - The selection, management and use of mobile
platforms (MEWP)	2005	elevating work platforms
		https://www.hse.gov.uk/pubns/geis6.pdf
		HSG150 Health and safety in construction
		https://www.hse.gov.uk/pubns/priced/hsg150.pdf
Suspended access	The Work at Height Regulations	INDG367- Inspecting fall arrest equipment made from
equipment	2005	webbing or rope
		https://www.hse.gov.uk/pubns/indg367.pdf
		HSG150 Health and safety in construction
		https://www.hse.gov.uk/pubns/priced/hsg150.pdf
Safety harness	The Work at Height Regulations	HSG33- Health and safety in roof work
	2005	https://www.hse.gov.uk/pubns/priced/hsg33.pdf
		HSG150 Health and safety in construction
		https://www.hse.gov.uk/pubns/priced/hsg150.pdf

Activity	UK Regs	Performance standards					
Prevention of drowning							
Prevention of drowning	The Construction (Design and Management) Regulations 2015	AIS1 - Personal buoyancy equipment on inland and inshore waters <u>https://www.hse.gov.uk/pubns/ais1.pdf</u> HSG150 Health and safety in construction <u>https://www.hse.gov.uk/pubns/priced/hsg150.pdf</u>					
	Temporar	y work					
Temporary work	The Construction (Design and Management) Regulations 2015	BS 5975:2019 Code of practice for temporary works procedures and the permissible stress design of falsework					

APPENDIX F: CAT 2 DESIGN CHECK COMMENTS

SBQ1-DCL-CIV-SBKXX-CA-CE-000006

Contractor	GRAHAM
Project	South Bank Quay, Teesworks
DORAN Doc Reference Number	SBQ1-DCL-CIV-SBKXX-RP-CE-000016
Document	Category 2 Design Check Comments for;
	Drainage
Revision	P01
Date	02/17/2022

	#	Section	Comment	Comment Date	Status	Response	Response Date	Status	Comment	Comment Date	Status
	1	Drainage details	interceptor vent pipe to be indicated on the drawings	17/02/2022		Interceptor vent pipe notes added to drawings 400001, 400002 and 400003	15/03/2022				
	2	Drainage details	Manhole schedule is required	17/02/2022		Manhole schedule has been produced. Refer to drawing 400004	15/03/2022				
	3	Drainage details	The use of Rocker Pipes is to be noted on the drainage drawings	17/02/2022	-	rocker pipe notes added to drawing 400002 and 400011	15/03/2022				
	4		Consideration to be given to the impact on drainage of settlement in the areas that are not pilled. Outfall level at quay wall is fixed and so should be set at a level required for the design and accounting for maximum settlement. Connection details to consider static outfall with settling drainage network.	23/02/2022		The maximum expected settlement expected during the design life of the pavement is approximately 80mm. The pipe gradient between all key elements has been increased to accommodate a 80mm settlement. The minimum gradient following 80mm settlement remains at 1 in 150. Rocker pipe will be installed at all pipe connects to enable rotation of the pipes.	15/03/2022	Closed			

APPENDIX G: DESIGN AND CHECK CERTIFICATES

SBQ1-DCL-CIV-SBKXX-CA-CE-000006

SOUTH BANK QUAY PHASE 1 CHECK CERTIFICATE – CATEGORY 2 STRUCTURE

Name of Structure: Drainage

Certificate No. SBQ1-DCL-CIV-SBKXX-CC-CE-000006 - Rev P02

- 1. We certify that reasonable skill, care and diligence has been used in the preparation of the check of the above structure with a view to securing that:
 - i. It has been checked in accordance with

The Acceptance in Principle (AIP) No:	SBQ1-DCL-CIV-SBKXX-RP-CE-000006
Dated:	February 2022

ii. It has been accurately translated into Drawings and Specification. The unique numbers of these Drawings and Specifications are:-

Drawing / Document Number	Drawing/Document Title	Revision
SBQ1-DCL-CIV-SBKXX-CA-CE- 000006	Full Design Package – Drainage	P02

Design Organisation Authorising Representative

for Category 2 Structure Design Check

Signed:

wid WAR

Position Held: Associate Name: David Whiteside Date: 04/05/2022

2. The Certificate is accepted by the **Employer's Representative**.

Signed ... EMPLOYER'S REPRESENTATIVE Name ... Organisation ... Date ...

SOUTH BANK QUAY PHASE 1 DESIGN CERTIFICATE – CATEGORY 2 STRUCTURE

Name of Structure: Drainage

Certificate No. SBQ1-DCL-CIV-SBKXX-DC-CE-000006 Rev P02

- 1. We certify that reasonable skill, care and diligence has been used in the preparation of the design of the above structure with a view to securing that:
 - i. It has been designed in accordance with

The Acceptance in Principle (AIP) No:	SBQ1-DCL-CIV-SBKXX-RP-CE-000006	
Dated:	February 2022	

ii. It has been accurately translated into Drawings and Specification. The unique numbers of these Drawings and Specifications are:-

Drawing / Document Number	Drawing/Document Title	Revision
SBQ1-DCL-CIV-SBKXX-CA-CE- 000006	Full Design Package – Drainage	P02

2. The relevant Check Certificate is attached. The unique number of this certificate is: SBQ1-DCL-CIV-SBKXX-CC-CE-000006 Rev P02

Design Organisation Authorising Representative

Signed:

000

Position Held:DirectorName:Campbell DavisDate:04/05/2022

3. The Certificate is accepted by the **Employer's Representative**.

Signed
EMPLOYER'S REPRESENTATIVE
Name
Organisation
Date

APPENDIX H: SPECIFICATION

SBQ1-DCL-CIV-SBKXX-CA-CE-000006

SOUTH BANK QUAY PHASE 1

DRAINAGE SPECIFICATION
SBQ1-DCL-CIV-SBKXX-SP-CE-000011-P02

May 2022

CONSULTING ENGINEERS

- » Civil Engineering
- » Structural Engineering
- » Traffic and Transportation
- » CDM Co-ordination
- » Project Management

Electronic Copy

DORAN CONSULTING

SOUTH BANK QUAY PHASE 1

DRAINAGE SPECIFICATION

SBQ1-DCL-CIV-SBKXX-SP-CE-000011

May 2022

Job no	Prepared by	Checked by	Approved by	Status	Rev	Issued to	No of copies	Date
SBQ1	PMM	FD	CD	S5	P02	GRAHAM	e*	04/05/22
SBQ1	PMM	FD	CD	S5	P01	GRAHAM	e*	21/03/22

Doran Consulting Limited Registered Office Norwood House 96-102 Great Victoria Street Belfast BT2 7BE

T 028 9033 3443

F 028 9023 5501

E mail@doran.co.ukW www.doran.co.uk

Contents

1.0	BRIEF DESCRIPTION AND SITE CONDITIONS	4
1.1	THE WORKS	4
1.2	SITE INFORMATION	4
2.0	DRAINAGE SPECIFICATION	6

1.0 BRIEF DESCRIPTION AND SITE CONDITIONS

1.1 THE WORKS

- 1.1.1 The construction of the new quay will primarily service the offshore sector, offering some 125 acres of hard standing for manufacturing, storage and mobilisation. The project is part of the wider Teesworks development scheme to provide some 4,500,000ft² of land for manufacturing, logistics and distribution.
- 1.1.2 The concrete pavement construction is to be undertaken to this method specification with specified classification, control and verification testing.

1.2 SITE INFORMATION

- 1.2.1 The site is located on the south bank of the River Tees at Redcar approximately 6km east of Billingham. The National Grid reference of the approximate centre of the site is NZ 545 227. This can be found on Ordnance Survey 1:50,000 Sheet No. 93 (Middlesbrough, Darlington & Hartlepool). Part of this sheet is reproduced as Figure 1.
- 1.2.2 The site comprises a stretch of approximately 1km land on the south bank of the River Tees which is largely disused land/ derelict. A number of disused oil storage tanks are present on site along with existing local roads and areas of hardstanding. The site is bound to the south and east by further disused land and to the south-west by Teesport Commerce Park.

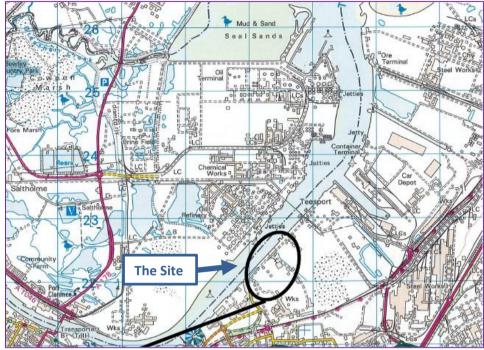


Figure 1. Site Location

(Ordnance Survey Crown Copyright and database rights 2021. Licence Number 1000050411)

2.0 DRAINAGE SPECIFICATION

2.1 PREAMBLE TO THE DRAINAGE SPECIFICATION

- 2.1.1 The Drainage Specification shall be the 'Specification for Highway Works', published by the Stationery Office (formerly HMSO) as Volume 1 of the Manual of Contract Documents for Highway Works, as modified and extended by the following contract specific items:
 - I. Appendix 0/1: Contract specific Additional, Substitute and Cancelled Clauses, Tables and Figures;
 - II. Appendix 0/2: Contract specific minor alterations to existing Clauses, Tables and Figures;
 - III. The contract specific Numbered Appendices listed in Appendix 0/3;

Appendix 0/4 contains a list of the Drawings.

- 2.1.2 The relevant publication date of each page of the Specification for Highway Works is given in the Schedule of Pages and Relevant Publication Dates.
- 2.1.3 Insofar as any of the contract specific Numbered Appendices may conflict or be inconsistent with any provision of the Specification for Highway Works the Numbered Appendices shall always prevail.
- 2.1.4 Any reference in the Contract to a Clause number or contract specific Appendix shall be deemed to refer to the corresponding Substitute Clause number or contract specific Appendix listed in Appendix 0/1 or 0/2.
- 2.1.5 Where a Clause is altered any original Table/Figure referred to in the Clause shall apply unless the Table/Figure is also altered. Where a Table/Figure is altered any reference in a Clause to the original Table/Figure shall apply to the altered Table/Figure.

- 2.1.6 Where a Clause in the Specification relates to work goods or materials which are not required for the Works it shall be deemed not to apply.
- 2.1.7 Any Appendix referred to in the Specification which is not used shall be deemed not to apply.
- 2.1.8 Where Standards and other documents are incorporated into the Contract by reference the respective edition used shall be that which is current on the Contract Reference Document Date unless otherwise stated in the Specification.

APPENDIX 0/1 : CONTRACT - SPECIFIC ADDITIONAL, SUBSTITUTE AND CANCELLED CLAUSES AND TABLES INCLUDED IN THE CONTRACT

0.1.1 List of Additional Clauses, Tables and Figures

Clause Table or Fig	Title	Written on Page No.
No		
172 AR	Removal of Surplus material	APP. 0/1 – 11

Additional Clauses, Tables and Figures

Clause Table,	Title
Or Fig No	
172 AR	REMOVAL OF SURPLUS MATERIAL
	 The Contractor shall not allow rubbish, debris and surplus material of any description to accumulate but shall clear away all such material on the same day as it is excavated.
	 2 The Contractor shall as far as possible prevent any material entering a . gully, drainage channel or chamber and shall remove immediately any material which may enter.

APPENDIX 0/2: CONTRACT - SPECIFIC MINOR ALTERATIONS TO EXISTING CLAUSES AND TABLES INCLUDED IN THE CONTRACT

Clause No	Alterations to be made
(etc)	
	None

APPENDIX 0/3:CONTRACT SPECIFIC NUMBERED APPENDICES REFERREDTO IN THE SPECIFICATION AND INCLUDED IN THE CONTRACT

Appendix	Title			
No.				
	INTRODUCTION			
0/1	Contract Specific Additional, Substitute and Cancelled Clauses, Tables and Figures			
	included in the Contract			
0/2	Contract Specific Minor Alterations to Existing Clauses, Tables and Figures included in			
	the Contract			
0/3	List of Numbered Appendices Referred to in the Specification and Included in the			
	Contract.			
0/4	List of Drawings and Other Documents Included in the Contract.			
	DRAINAGE AND SERVICE DUCTS			
5/1	Drainage Requirements			
5/2	Service Duct Requirements			
5/4	Fin Drains and Narrow Filter Drains			
5/6	Linear drainage channel systems			
5/7	Termoplastic structural wall pipes and fittings			
1	1			

APPENDIX 0/4: LIST OF DRAINAGE DRAWINGS

0.4.1 Doran Consulting Drawings included in the Contract

Drawing No	Drawing Title
Doran Consulting Drawings	
SBQ1-DCL-CIV-SBKXX- DR-CE-400001	Proposed Drainage Layout Sheet 1
3601-062-017-36KXX- DR-62-400001	Floposed Drainage Layout Sheet 1
SBQ1-DCL-CIV-SBKXX- DR-CE-400002	Drainage Standard Details Sheet 1
SBQ1-DCL-CIV-SBKXX- DR-CE-400003	Drainage Standard Details Sheet 2
SBQ1-DCL-CIV-SBKXX- DR-CE-400004	Manhole Schedule
SBQ1-DCL-CIV-SBKXX- DR-CE-400006	Drainage Standard Details Sheet 4
SBQ1-DCL-CIV-SBKXX- DR-CE-400007	Drainage Standard Details Sheet 5
SBQ1-DCL-CIV-SBKXX- DR-CE-400011	Petrol Interceptor Sections

0.4.2 Standard Drawings

Brought Into the Contract by Reference

HCD published by HMSO as Volume 3 of the Manual of Contract Documents for Highway Works contains the following drawings brought into the Contract by reference. Unless otherwise stated below the whole drawing is brought into the Contract.

Drawing No	Title	Date
F1	Surface Water Drains – Trench and Bedding Details	Dec 91
F2	Filter Drains – Trench and Bedding Details	Nov 03
F5	Type 3 Chamber (Precast Concrete Manhole)	May 06
F10	Chamber Fittings – Ladder, Handhold and Safety Chain	Nov 03
F17	Details of Keyways and Keys for Manhole Tops and Kerb type Gully Tops	Mar 98
F28	Chamber Fittings – Guardrail	Nov 03

SERIES 100 - PRELIMINARIES

APPENDIX 1/5: TESTING TO BE CARRIED OUT BY THE CONTRACTOR

General

- 1 Details of the testing to be carried out by the Contractor is shown below in Table 1/5.
- 2 Routine tests carried out by manufacturers and suppliers in compliance with British Standard or other standard specification are not included, but where a standard or specification makes provision for a test certificate this is indicated.

Notes:

- All sampling and testing will be carried out by the contractor to the frequency stated below and at the Contractor's expense. All tests must be carried out by an independent NAMAS approved Testing House which has UKAS accreditation for that specific test.
- 2. Test equivalent to those specified in this Appendix will be necessary for any equivalent work, goods materials proposed by the Contractor.
- 3. (N) indicates that a UKAS sampling and test report certificate is required.
- For imported materials sampled at source the sample must be representative of the material used in the works and the test certificate shall be no more than 12 months old.
- 5. Unless otherwise shown in this Appendix tests and test certificates for work, goods or materials as scheduled under any one Clause are required for all such work, goods or materials.
- All laboratory testing shall be carried out by a testing house which is independent of the Contractor and is not within the same group of companies as the Contractor.
- 7. Cube strength tests are required for all cast in-situ concrete elements.
- 8. The Contractor shall allow the Engineer every reasonable opportunity and facility to inspect and monitor the sampling and testing processes. The Contractor shall notify the Engineer of who, where and when samples and testing are being carried

out and be able to demonstrate that the UKAS accreditation required above is being complied with.

- 9. As part of the provision of samples and testing undertaken by the Contractor, the Contractor shall keep a daily record of samples of goods and materials taken by or on behalf of the Contractor for testing. Records shall be in sufficient detail to record the nature and the source of goods and materials and shall identify the locations and means of selection and sampling. A copy of the daily record shall be provided by the Contractor on the next working day for retention and use by the Overseeing Organisation.
- 10. Test reports and certificates shall bear suitable identification compatible with the Contractors registration of samples.
- 11. Additionally, all test results shall be presented in accordance with the relevant testing standard and shall incorporate the following information:
 - a. Specimen reference;
 - b. Material brief description;
 - c. Manufacturer's, supplier's name or origin as appropriate;
 - d. Batch reference number (proprietary material only);
 - e. Quantity of material;
 - f. Location of material in the works;
 - g. Date sampled, by whom and method used;
 - h. Date(s) tested;
 - i. Results of all tests.

Clause	Work, Goods or M	aterial	Test	Frequency of Testing	Test Certificate	Comments
Series 50	0					
501	Pipes for drainage ducts	and service				Product certification scheme applies
	Vitrified Clay			`	Required for	
	Concrete- PC/SRC Concrete	Not exceeding 900 mm dia			pipes not quality marked by an UKAS or	
	Prestressed Iron- cast	ulu			equivalent accredited	
	Iron- ductile				body listed in	
	PVC-U				Appendix B	
	GRP					
	Plastics, see Tab					
	Corrugated Steel		Manufacturers		Required	
	Corrugated steel bitumen protection	Not exceeding 900 mm dia	test		(AASHTO)	
	Other materials				Required	BBA certification (or equivalent) applies
503	Pipe Bedding		Grading and fines content	1 per 250m ³	Required	
			Water-soluble sulphate (WS) content (N)	5 per source	-	
			Oxidisable sulfides (OS) content and total potential sulphate (TPS) content (N)	5 per source		
			Resistance to fragmentation (N)	1 per source		

Clause	Work, Goods or Material	Test	Frequency of Testing	Test Certificate	Comments
Series 50	0				
505	Filter medium backfill	Plastic index (N)	1 per source	Required	
		Resistance to	1 per source		
		fragmentation (N)			
		Water-soluble	5 per course		
		sulphate (WS)			
		content (N)			
		Oxidisable	5 per source		
		sulfides (OS)			
		content and total			
		potential sulphate			
		(TPA) content (N)			
		Grading and fines	1 per 500		
		content	tonnes		
		Permeability (N)	1 per source*		
506	Sealing existing drains				
	Concrete				
	Grout	-			
507	Chambers				
	Precast concrete				Product
					certification
			-		scheme
	Corrugated galvanized			Required	Product
	steel	tests)			certification
	Manhole steps				scheme
	Steel fitments	-			
	Covers, grates and frames				Product
					certification
					scheme applies
	Cover bolts				Quality
					management
					scheme applies
					ma

Clause	Work, Goods or Material	Test	Frequency of Testing	Test Certificate	Comments
Series 50	0				
508	Gullies and pipe junction Precast concrete				Product certification applies Product
	Clay Cast iron and steel				certification applies
509	Watertightness of joints	Air test Pressure test	All pipelines with watertight joints All watermains	Required	Specification for the Water Industry Section 7
512	Backfill to pipe bays	Grading	1 per 50 tonnes (min of 3)	Required	
		Water-soluble sulphate (WS) content (N)	5 per source		Minimum to allow for natural variability of
		Oxidisable sulfides (OS) content and total potential sulfate (TPA) content (N)	5 per source		sulphur compounds

Clause	Work, Goods or Material	Test	Frequency	Test	Comments
			of Testing	Certificate	
Series 50	-				
513	Permeable backing to earth	Plastic index (N)	1 per source	Required	
	retaining structures	Water-soluble	5 per source	Required	
		sulphate (WS)			
		content (N)			
		Oxidisable	5 per source		
		sulfides (OS)			
		content and total			
		potential sulphate			
		(TPS) content (N)			
		Resistance to	1 per source		
		fragmentation (N)			
		Grading	1 per 200		
			tonnes (min		
			of 3)*		
		Permeability (N)	1 per source		
	Precast hollow concrete	(Manufacturer's		Required	
	blocks	test)			
515	Narrow filter drains	Manufacturer's		Required	BBA
	Geotextile, pipes and	test			Certification (c
	fittings				equivalent)
					applies
	Granular fill	Plastic index (N)	1 per source		
		Resistance to			
		fragmentation (N)			
		Water-soluble	5 per source		
		sulphate (WS)			
		content (N)			
		Oxidisable	5 per source		
		sulfides (OS)			
		content and total			
		potential sulphate			
		(TPS) content (N)			
		Grading and fines	1 per 200		
		contents	tonnes (Min		
			of 3)		
			,		
		Permeability (N)	1 per source		

Clause	Work, Goods or Material	Test	Frequency of Testing	Test Certificate	Comments
O a ria a E O			or resting	Certificate	
Series 50	J				
516	Combined drainage and kerb	Load test - to	A minimum	Required	Certification that
	systems	confirm load	of 1 test and		the systems
		classification in	not less than		comply with
		accordance with	1 test per		Clause 516 is
		Appendix 5/5	500 m for		required
			each type		
			and source		
517	Linear drainage systems	Load test - to	A minimum	Required	Certification that
		confirm load	of 1 test and		the systems
		classification in	not less than		comply with
		accordance with	1 test per		Clause 517 is
		Appendix 5/6	500m for		required
			each type		
			and source		
518	Thermoplastic structured wall	(Manufacturer's		Required	BBA
	pipes and fittings	test)			Certification (or
					equivalent)
					applies

- 1. (N) indicates that a NAMAS test report or certificate is required.
- 2. Certificate to be provided monthly. Quality management and certification schemes apply.
- Results of routine control test by the manufacturer/supplier to be provided.
 Product certification schemes apply.

SERIES 500 - DRAINAGE

APPENDIX 5/1: DRAINAGE REQUIREMENTS

- 5.1.1 The pipe sizes, material type and class for the drainage system are detailed on the Drawings listed in Appendix 0/4 and should be in accordance with Table 5/1 Series 500 SHW:
- 5.1.2 The bedding detail to filter drains to be Type K as shown on Drawing No. F2, MCDHW, Volume 3, "Highway Construction Details". All filter material to be Type A.
- 5.1.3 Class S granular surround where pipes achieve cover depth of greater than or equal to 1200mm.
- 5.1.4 Class Z concrete surround where pipes achieve cover depth of less than 1200mm.
- 5.1.5 All standard chamber covers and frames shall be Gatic RRF F900 750mm x 750mm clear opening, or approved equal. Gatic covers are to be supplied with two sets of lifters for each cover type. Reinforced concrete surround to chamber covers.
- 5.1.6 Hydro-brake Optimum with peak flow of 225I/s, or approved equal, to be installed on each drainage line in the chamber immediately up line of the full retention separator. Hydro-brake to be installed in strict accordance with the manufacturer's instructions.
- 5.1.7 Full retention separators to be Klargester NSFA225, or approved equal, to be installed on each storm drainage line. Full retention separators are to be installed in accordance with the manufacturers instructions. Each full retention separator is to be vented and fitted with a Klargester oil level alarm. Refer to drawing SBQ1-DCL-CIV-SBKXX_DR_CE_400002 for reinforced surround details.
- 5.1.8 Multi-span cover to full retention separator to be DM/F load class 900 4,000mm x 1,200mm clear opening. or approved equal. Multi-span covers to be supplied with two sets of lifters.

- 5.1.9 Tidal flap valves to be 600mm diameter Athlon PTK-A HDPE Flap Valve, or approved equal, to be installed on each drainage line under the proposed quay structure. Flap vale to be installed in strict accordance with the manufacturer's instructions.
- 5.1.10 Emergency stormwater shut of valves to be Athlon 600mm HDPE penstock, or approved equal, to be installed in the storm chambers immediately downline of each full retention separators. Flap valve to be installed in strict accordance with the manufacturer's instructions.
- 5.1.11 CCTV survey of the system with the exception of gully connections shall be carried out on completion of the works and again before the end of the maintenance period. A copy of the footage and survey reports including gradient profile shall be supplied free of charge to the Client.

APPENDIX 5/2: SERVICE DUCT REQUIREMENTS

5.2.1 Refer to the M&E Drawings and Specification for the location, size and type of the service ducts required

APPENDIX 5/4: FIN DRAINS AND NARROW FILTER DRAINS

- 5.4.1 Refer to drawing SBQ1-DCL-CIV-SBKXX_DR_CE_400001 and 400006 for filter drain location and standard construction detail respectively .
- 5.4.2 Surround geotextile to be TERRAM T1000 or approved equal.
- 5.4.3 Geotextile permeability to be 90I/m2/s
- 5.4.4 Drainage pipe to be fully perforated 300mm diameter HDPE pipe.
- 5.4.5 Trench to be filled with 20mm/40mm clean drainage stone

APPENDIX 5/6: LINEAR DRAINAGE CHANNEL SYSTEMS

- 5.6.1 Refer to drawing SBQ1-DCL-CIV-SBKXX_DR_CE_400001 location, length, and sizing of linear drainage channels.
- 5.6.2 All linear drainage channels to be ACO Q-Max system. All Q-Max components to have a reinforced concrete surround. Slot drainage to be installed as per the manufacture's instructions. Channels to be F900 load rating (BS EN 124).
- 5.6.3 Refer to drawing SBQ1-DCL-CIV-SBKXX_DR_CE_400003 for reinforced surround details for each Q Max channel type. Concrete surround to all Ultra Slot system components to have a minimum compressive strength of C40/50
- 5.6.4 All linear drainage system chambers to be ACO Q-Max 550/700/900 sump chamber units. Chambers to have reinforced concrete surround. Refer to drawing SBQ1-DCL-CIV-SBKXX_DR_CE_400006 for surround details. Chamber and covers to be F900 load rating (BS EN 124).

APPENDIX 5/7: termoplastic structural wall pipes and fittings

5.7.1 The Contractor shall provide the following information, in accordance with sub-Clause 518.2 for the range of pipes and fittings (To be verified by the Certification body – see sub-Clause 518.15):

Technical Drawings showing dimensions and tolerances including sealing rings and weight per metre, together with properties, as specified in sub-Clauses 518.3 and 518.5.

Material specification, as required in sub-Clause 518.2:

Property	Test Method Reference	Specification
Tensile Properties	BS EN ISO 6259 BS EN ISO 527-1	
Vicat	BS EN 727	
Longitudinal revision	BS EN 743	
K-value	BS EN 922	
PVC Content	BS EN 1905	
Density	BS EN ISO 1183-3, ISO 4451	
Heat Revision	ISO 12091	
Effects of heat (injection		
moulded fittings only)	BS EN 763	

Table 1: Un-plasticised Polyvinyl Chloride

Table 2: Polyethylene (PE)

Property	Test Method Reference	Specification
Tensile Properties	BS EN ISO 6259	
Tensile Properties	BS EN ISO 527-1	
Oxygen induction time	BS EN 728	
Melt Flow Rate	BS EN ISO 1133	
Density	BS EN ISO 1183-3, ISO 4451	
Heat Revision	ISO 12091	
Effects of heat (injection moulded		
fittings only)	BS EN 763	

Table 3: Polyethylene (PP)

Property	Test Method Reference	Specification
Tensile Properties	BS EN ISO 6259	
	BS EN ISO 527-1	
Oxygen induction time	BS EN 728	
Melt Flow Rate	BS EN ISO 1133	
Density	BS EN ISO 1183-3, ISO 4451	
Heat Revision	ISO 12091	
Effects of heat (injection moulded		
fittings only)	BS EN 763	